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Abstract—We develop a novel algorithm for Geo-Spatial
location estimation for Internet of Things (IoT) networks
by utilizing a One-Way Time-of-Arrival (OW-TOA) tech-
nology. Although very popular, OW-TOA based localization
techniques are negatively affected by three phenomena: i)
Wireless connectivity between the target and the receiving
nodes is not guaranteed (audibility), resulting in likelihood
surface which may produce a non-unique maxima; ii) clock
offset imperfection which is a result of a fixed deviation from
a reference clock; and iii) a ranging offset which introduces
distance dependent bias to the OW-TOA measurements.
We develop a new statistical framework which incorporates
these aspects and then derive the joint localization and clock
offset Maximum Likelihood Estimator to jointly estimate
the location of the target and the clock offset. To solve the
resulting non-convex optimization problem we propose to
use the Cross-Entropy method.

I. INTRODUCTION

The term ”Internet-of-Things” (IoT) describes several
technologies and research disciplines in which the Internet
extends into the physical world [1]–[4]. For the IoT paradigm
to be successful it will need to be able to track the location
(and the movement) that comprise the local instantiation
of the IoT at any given time and place of these objects,
thus providing location-based services, which we denote
as Location of Things (LoT). One promising approach that
aims at achieving sub-centimeter accuracy is based on Ultra-
Wideband (UWB) ranging [5]–[8]. The process of ranging
involves estimation of the distance between any two nodes.
There are several techniques available for ranging such as
Angle of Arrival (AOA), Received Signal Strength (RSS),
Time of Arrival (ToA), and a combination of these [9]–[12].

We present a new statistical framework for Geo-Spatial
location estimation for Internet of Things (IoT) networks
by utilizing a One-Way Time-of-Arrval (OW-TOA) technol-
ogy, which exploits the fine delay resolution property of
wideband signals and have great potential for providing
sub-centimeter resolution [6]–[8]. One Way Time of Arrival
(OW-TOF) is a very popular method to estimate the point-
to-point distance between two communicating devices. This
is achieved based on the measurements of the time that a
signal is required to travel from one device to the other.
An example of the OW-TOF protocol can be found in
[13] which aims at reducing the communication load and
explores the broadcast property of WSN. However, OW-TOF
based localization techniques are negatively affected by the
following phenomena:

1) Audibility of the receiving nodes is not guaranteed,
resulting in likelihood surface which have non-unique

maxima (ambiguity phenomenon). This degrades the
localization performance [14]–[17].

2) Clock offset imperfection manifested by a fixed devi-
ation from a reference clock at time zero [18].

3) Ranging offset which introduces distance dependent
bias to the OW-TOF measurements, due to variations
in the received signal strength [19], [20].

To tackle these three important aspects in a holistic way,
we develop a novel statistical model which incorporates
all these aspects. This results in a statistical dependence
between the ranging offset and audibility information
which was not exploited before, and results in a likelihood
structure which contains truncated distributions. We then
formulate and develop the joint localization and clock offset
algorithm to estimate both the location of the target and the
clock offset. We evaluate the estimation performance of the
proposed algorithm via simulations.

II. WIRELESS SENSOR NETWORK SYSTEM MODEL

We consider a network with N Base Stations (BS)
whose locations are known and one target node at an
unknown location to be estimated. We now present the
system model:

1) A single target is located at unknown location θ =
[xu yu] ∈ χ ⊆ R2.

2) Assume N Base Stations (BS) deployed in a 2-D
plane, where the known location of the n-th BS is
xn = [xn yn] ∈ χ.

3) The target transmits a signal with power Pt while
the N BS listen to the ranging packets and record
timestamps locally. The trip time, trt (A,B), mea-
sured at BS A located at ΘA = [xa ya] from target
B located at ΘB = [xb yb] is given by

trt (A,B) = tstop − tstart + tδ + Tψ
(
PR (θA, θB)

)
+ Tp,

(1)

where tstart is the transmitted time stamp at node
B, tstop is the received time stamp at node A, tδ
is the common clock offset [18], Tψ

(
PR (θA, θB)

)
is the random ranging offset due to the received
power [19], [20], Tp is the random offset time
accounting for all processing delays in the system,
which include the time for Node B to transmit the



packet, and the time taken to Node A to process
the packet.

4) Audibility model: in order to obtain ranging mea-
surements between two devices in the sensor net-
work, the two devices need to be connected so that
they can exchange messages. Due to various phys-
ical phenomena such as fading and multi-path, a
simple deterministic communication model, such
as the disk model, may not be well suited to
describe the stochastic nature of the wireless chan-
nel. To address this issue, we adopt a random
connection model which encodes random environ-
mental parameters such as path loss. We express
the notion of audibility via Power Loss Model,
which is based on an inverse power law model of
the attenuation, and a log-normal shadow fading.
The received power by node located at θA from a
transmitting target at θB is given by:

PR (θA, θB) = pT − 10α log
d (θA, θB)

d0
+W [dB] ,

and pT is the transmitted power by the target
B, α is the path-loss exponent, d (θA, θB) :=√

(xa − xb)2
+ (ya − yb)2 is the Euclidean distance

between the target A and BS B, d0 is a reference
distance, and W represents the shadowing effect,
modelled as a Normal random variable, i.e. W ∼
N
(
µw, σ

2
w

)
.

Let Γ ∈ {0, 1}N be the binary indicator vector
which indicates which BS successfully received the
message from the target, where Γn specifies if the
target is audible by the n-th BS , meaning that{

Γn = 1, if PR (xn, θ) > λ,

Γn = 0, Otherwise

where PR (xn, θ) is the received power at the n-
th BS from the target. Also, λ is a pre-defined
threshold representing the receiver’s sensitivity.

5) Ranging model: let y ∈ RN be the observation
vector, and the ranging measurement at the n-th
BS is given by multiplying the trip time trt (A,B)
given in (1), by the speed of light:

yn =


d (xn, θ) + δ + Ψn

(
PR (xn, θ)

)
+ Er

n,

if Γn = 1 (Audible node)

∅,Otherwise (Inaudible node)

where ∅ denotes ”no observation”, δ ∈ ξ
is the unknown common clock offset distance,
Ψn

(
PR (xn, θ)

)
∼ N

(
µΨ (xn, θ) , σ

2
Ψ

)
is the n-th

ranging offset and Er
n ∼ N

(
µr, σ

2
r

)
is the ranging

error.
6) The ranging offset Ψ

(
PR (θA, θB)

)
is given by a

simple linear regression model which we fit via
measurements and is given by:

Ψ
(
PR (θA, θB)

)
= β1P

R (θA, θB) + β0 + Ereg

where β0, β1 are the covariates, and Ereg is the
error term modelled as Ereg ∼ N

(
0, σ2

Ereg

)
. The

model parameters β0, β1, σ
2
Ereg are calibrated via

Maximum Likelihood Estimator (MLE) from the
data-set [20]. It follows that in the ranging distance
offset is given by:

Ψ
(
PR (θA, θB) |β0, β1, σ

2
Ereg

)
∼ N

(
µΨ (θA, θB) , σ2

Ψ

)
,

where µΨ (θA, θB) = β1

(
pT − 10α log d(θA,θB)

d0

)
+

β0, and σ2
Ψ = β2

1σ
2
W + σ2

Ereg .
Next, given the model assumptions, we derive the Maxi-
mum Likelihood Estimation for the location of the target
θ.

III. JOINT LOCATION AND CLOCK OFFSET ESTIMATION

We now formulate the joint MLE for the unknown
location of the target, θ, and the clock offset δ, given
set of ranging observations y1:N , and and audibility
indicators Γ1:N .

To this end we factorize the likelihood function such
that we have tractable components, and since the pro-
cessing delay error terms are i.i.d, we have that the joint
MLE is given by:(

θ̂, δ̂
)

= arg max
θ∈χ,δ∈ξ

p (y1:N ,Γ1:N |θ, δ)

= arg max
θ∈χ,δ∈ξ

p (y1:N |Γ1:N , θ, δ) Pr (Γ1:N |θ)

= arg max
θ∈χ,δ∈ξ

N∑
n=1

log p (yn|Γn = 1, θ, δ)1 (Γn = 1)

+

N∑
n=1

log Pr (Γn = 1|θ)1 (Γn = 1)

+

N∑
n=1

log Pr (Γn = 0|θ)1 (Γn = 0) .

(2)

Next, in Lemma 1 and Lemma 2 we present
the likelihood functions of the three components
p (yn|Γn = 1, θ, δ), Pr (Γn = 1|θ) and Pr (Γn = 0|θ).

Lemma 1 (Ranging likelihood function of an audible
node p (yn|Γn = 1, θ, δ)).

The likelihood function of the n-th audible node is given by:

p (yn|Γn = 1, θ, δ) =

exp

(
− (d(xn,θ)+δ+µΨ(xn,θ)−yn)2

2(σ2
Ψ+σ2

ε)

)
√

2π
(

erf
[

Λ−µΨ(xn,θ)√
2σΨ

]
+ 1
)√

σ2
Ψ + σ2

ε

×

(
erf

[
(Λ− yn + d (xn, θ) + δ)σ2

Ψ + (Λ− µΨ (xn, θ))σ
2
ε√

2σΨσε
√
σ2

Ψ + σ2
ε

]
+ 1

)
Lemma 2 (Audibility likelihood function Pr (Γn|xn, θ)).

The audibility likelihood function of the the n-th node is
given by:

Pr (Γn|xn, θ) =


1
2 −

1
2 erf

[
λ−

(
pT−10α log

d(xn,θ)
d0

)
√

2σ2
W

]
, Γn = 1

1
2 + 1

2 erf
[
λ−

(
pT−10α log

d(xn,θ)
d0

)
√

2σ2
W

]
, Γn = 0.
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By plugging the results of Lemma 1 and Lemma 2
into the MLE in Eq. (2), we obtain the joint location and
clock offset maximum likelihood estimator, presented in
the following:

Proposition 1. The joint location and clock offset Maximum
Likelihood estimator is given by the solution to the following
optimization problem:

(
θ̂, δ̂
)

= arg max
θ∈χ,δ∈ξ

N∑
n=1

{
−

(d (xn, θ) + δ + µΨ (xn, θ)− yn)2

2
(
σ2

Ψ + σ2
ε

)
+ log

erf

 (Λ− yn + d (xn, θ) + δ)σ2
Ψ + (Λ− µΨ (xn, θ))σ2

ε
√

2σΨσε

√
σ2

Ψ + σ2
ε

+ 1


− log

(
erf
[

Λ− µΨ (xn, θ)√
2σΨ

]
+ 1

)}
1 (Γn = 1)

+ log

1− erf

λ−
(
pT − 10α log

d(xn,θ)
d0

)
√

2σ2
W


1 (Γn = 1)

+ log

1 + erf

λ−
(
pT − 10α log

d(xn,θ)
d0

)
√

2σ2
W


1 (Γn = 0) .

Calculating the joint MLE involves solving a trivari-
ate optimization problem, where the objective function
is non-convex and non-linear in θ and δ. To solve this
optimization problem, we develop an efficient Monte
Carlo stochastic optimization algorithm, which is based
on the Cross Entropy Method (CEM) [21]. To implement
the CEM, the sampling pdf h (·; v ∈ V) needs to be
specified, as well as solving the stochastic optimization
problem to update the parameter vector v:

vt = arg max
v

1

J

J∑
i=1

1
(
U
(
z(i)
)
≥ γt

)
lnh

(
z(i); v

)
,

where z := ([xu , yu] , δ), U (z) as the objective function
in Proposition 1, and γt is a quantile-based threshold. We
choose the sampling density to be independent Normal
distribution. This choice is motivated by the availability
of fast and exact normal random number generators and
the fact that the solution for the stochastic optimization
problem yields a simple analytic solution. Our sampling
density is given by:

h (·; v ∈ V)
:
= N

(
xu;µx, σ

2
x

)
N
(
yu;µy, σ

2
y

)
N
(
δ;µδ, σ

2
δ

)
,

where v :=
[
µx, σ

2
x, µy, σ

2
y, µδ, σ

2
δ

]
. Based on this choice,

the solution for the stochastic optimization problem is
given by:

vt = argmax
vt

1

J

J∑
i=1

1
(
U
(
z(i)
)
≥ γ̂t

)
×
(
logN

(
xu;µx, σ

2
x

)
+ logN

(
yu;µy, σ

2
y

)
+ logN

(
δ;µδ, σ

2
δ

))
.

Solving this optimization problem results in an analytic
form for the new set of values for vt. For example, the
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Fig. 1: Localization estimation performance

two model parameters related with xu, given by µx, σ
2
x,

are updated as follows:

µx =

J∑
i=1

1
(
U
(
z(i)
)
≥ γ̂t

)
θ

(i)
x

J∑
i=1

1
(
U
(
z(i)
)
≥ γ̂t

) ,

σ2
x =

J∑
i=1

1
(
U
(
z(i)
)
≥ γ̂t

) (
µx − θ(i)

x

)2

J∑
i=1

1
(
U
(
z(i)
)
≥ γ̂t

) .

(3)

The parameter values for yu and δ can be found in a
similar way. Lastly, the smoothing matrix Σ is chosen to
be a diagonal matrix with values αx, αy, αδ , which are
typically in the range 0.6− 0.9.

IV. SIMULATION RESULTS

We now present numerical simulations to evaluate
the performance of the joint MLE for various parame-
ters. We consider an open environment of size 10 × 10
meters with a line-of-sight, and four BSs located at each
of the corners of the room. We evaluate the estimation
performance of our algorithm as a function of the audi-
bility threshold λ and the ranging noise variance σ2

r . The
results are presented in Figs. 1-2 terms of Mean Squared
Error (MSE).
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Fig. 2: Clock offset estimation performance
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