Stochastic Geometry Based Coverage Estimation Using Realistic Urban Shadowing Models

The main contribution of this paper consists in integrating a physically correlated shadowing model of the aggregate interference in a stochastic geometry-based approach. The considered shadowing takes place in a Manhattan urban grid and combines both penetration and corner diffraction when modeling signal transmission from base stations to users. A tractable expression for the network coverage probability is obtained thanks to the framework of stochastic geometry. Our initial results suggest that the diffracted mechanisms are dominant compared to building penetration.

Charles Wiame, Luc Vandendorpe, Claude Oestges
Place du Levant, 3 - bte L5.03.02, B-1348 Louvain-la-Neuve, Belgium
Phone: +32 476 319 272
Fax: +32-10-478 705
Email: charles.wiame@student.uclouvain.be