



# COST Action CA15104 Third Scientific Annual Report

COST Action CA15104 (IRACON) aims to achieve scientific networking and cooperation in novel design and analysis methods for 5G, and beyond-5G, radio communication networks.

The scientific activities of the action are organized according to two types of Working Groups: disciplinary and experimental Working Groups. In total, IRACON consists of 6 working groups: Radio Channels (DWG1), PHY layer (DWG2), NET Layer (DWG3), OTA Testing (EWG-OTA), Internet-of-Things (EWG-IoT), Localization and Tracing (EWG-LT) and Radio Access (EWG-RA). A sub-working group of EWG-IoT was also recently created: IoT for Health.

This report details the achievements of IRACON as a whole and of its Working Groups during the third grant period, summarizing the main activities and scientific results, and providing perspectives for the next period.

**Authors:** Sana Salous, Katsuyuki Haneda, Hanna Bogucka, Jan Sykora, Silvia Ruiz Boqué, Hamed Ahmadi, Wim Kotterman, Moray Rumney, Erik Ström, Chiara Buratti, Carles Anton-Haro, Klaus Witrisal, Florian Kaltenberger, Mark Beach, Narcis Cardona, and Claude Oestges, Kamran Sayrafian, Slawomir Ambroziak

Editors: Claude Oestges

Date: June 2019





### Contents

| Contents                                       | 2  |
|------------------------------------------------|----|
| List of acronyms                               | 3  |
| 1. Introduction                                | 5  |
| 1.1 Scientific objectives of IRACON            | 5  |
| 1.2 Objectives of the third grant period n     | 5  |
| 1.3 Working Groups: structure and coordination | 6  |
| 1.4 Working Groups: practical implementation   | 7  |
| 1.5 Final Book overview                        | 7  |
| 2. DWG1: Radio Channels                        | 8  |
| 2.1 General aspects of DWG1 work               | 8  |
| 2.2 Technical progress                         | 8  |
| 3. DWG2: PHY Layer1                            | 1  |
| 3.1 General aspects of DWG2 work1              | 1  |
| 3.2 Technical progress1                        | 1  |
| 4. DWG3: NET Layer1                            | 2  |
| 4.1 General aspects of DWG3 work1              | 2  |
| 4.2 Technical progress1                        | 2  |
| 5. EWG-OTA: Over-The-Air Testing1              | 5  |
| 5.1 General aspects of EWG-OTA work1           | 5  |
| 5.2 Technical progress1                        | 5  |
| 6. EWG-IoT: Internet-of-Things1                | 6  |
| 6.1 General aspects of EWG-IoT work1           | 6  |
| 6.2 Technical progress1                        | 6  |
| 7. EWG-LT: Localisation and Tracking2          | 20 |
| 7.1 General aspects of EWG-LT work2            | 20 |
| 7.2 Technical progress2                        | 20 |
| 8. EWG-RA: Radio Access2                       | 23 |
| 8.1 General aspects of EWG-RA work2            | 23 |
| 8.2 Technical progress2                        | 23 |
| 9. Conclusions and Perspectives2               | 24 |
| 9.1 Conclusions2                               | 24 |
| 9.2 Perspectives for the fourth grant period2  | 25 |
| Annex: List of Temporary Documents2            | 27 |





# List of acronyms

| BER     | Bit Error Ratio                                    |
|---------|----------------------------------------------------|
| BPSK    | Binary Phase Shift Keying                          |
| CoMP    | Cooperative Multi Point                            |
| D2D     | Device-to-Device                                   |
| DTT     | Digital Terrestrial Television                     |
| DWG     | Disciplinary Working Group                         |
| FCI     | Farly Career Investigator                          |
| EME     | Electro-Magnetic Field                             |
| ETSI    | European Telecommunications Standards Institute    |
| EWG     | Experimental Working Group                         |
| CNSS    | Clobal Navigation Satellito System                 |
| CP CP   | Gropt Poriod                                       |
|         | Home aNeda P                                       |
|         |                                                    |
| HVV     | Hardware                                           |
|         | Institute of Electrical and Electronical Engineers |
|         | Institute of Engineering and Technology            |
| lol     | Internet-of-Things                                 |
| ITS     | Intelligent Transportation Service                 |
| ITU-R   | International Telecommunication Union – Radio      |
| LSA     | License Shared Access                              |
| LT      | Localization and Tracking                          |
| LTE     | Long-Term Evolution                                |
| MAC     | Medium Access Control (layer)                      |
| MIMO    | Multiple-Input Multiple-Output                     |
| MOSG    | MIMO OTA Sub-Group                                 |
| MRC     | Maximal Ratio Combining                            |
| MTC     | Machine Type Communication                         |
| NET     | Network (layer)                                    |
| NFV     | Network Functions Virtualization                   |
| ΟΤΑ     | Over-the-Air                                       |
| PHY     | Physical (layer)                                   |
| PLNC    | Physical Layer Network Coding                      |
| RA      | Radio Access                                       |
| RAT     | Radio Access Technology                            |
| RAN     | Radio Access Network                               |
| RRM     | Radio Resource Management                          |
| SC-FDMA | Single Carrier Frequency Division Multiple Access  |
| SDN     | Software Defined Network                           |
| SDR     | Software Defined Radio                             |
| SG      | Study Group                                        |
| STSM    | Short Term Scientific Mission                      |
| TD      | Temporary Document                                 |
| URSI    | Union Radio Scientifique Internationale            |
| V2X     | Vehicle-to-Infrastructure                          |
| VNO     | Virtual Network Operator                           |
| WG      | Working Group                                      |
| 7F      | Zero-Forcing                                       |
|         | Loro i oronig                                      |





This page is intentionally left blank.





### 1. Introduction

### 1.1 Scientific objectives of IRACON

The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. The Inclusive Radio Communication *Networks* concept defines the technologies for supporting wireless connectivity for any rates, type of communicating units, and scenario. It is expected to be implemented in and beyond the fifth generation (5G) of radio communication networks. Spectral and spatial efficiency are key challenges, in addition to constraints like energy consumption, latency, mobility, adaptability, heterogeneity, coverage, and reliability, amongst others. While many of these aspects are not especially new, the wireless Internet of Things (IoT) beyond 2020 will in particular require revolutionary approaches in Radio Access Technologies (RATs), networks and systems in order to overcome the limitations of the current cellular deployments, the layered networking protocols, and the centralised management of spectrum, radio resources, services and content. Theoretical foundations have to be fully revisited and disruptive technologies are to be discovered during the coming decade.

In this context, IRACON, aims to achieve scientific breakthroughs, by introducing novel design and analysis methods for 5G, and beyond-5G, radio communication networks. IRACON aims at proposing solutions for inclusive and multidimensional communication systems with a wide variety of devices, practical constraints and real-world scenarios, addressing systems ranging from very simple transceivers and sensors, to smartphones and highly flexible cognitive radios. Challenges include: i) modelling the variety of radio channels that can be envisaged for inclusive radios; ii) capacity, energy, mobility, latency, scalability at the physical (PHY) and Medium Access Control (MAC) layers; iii) network automation, moving nodes, cloud and virtualisation architectures at the MAC and Network (NET) layers; iv) experimental research on the practicality of the proposed techniques, addressing Over-the-Air (OTA) testing, IoT, localisation, tracking and radio access.

#### 1.2 Objectives of the third grant period

For the second grant period, IRACON's objectives have been defined at the kick-off meeting as follows:

- 1. discuss and review future architecture and protocols for the Internet of Things (including the production of one deliverable)
- 2. promote the use of pan-European laboratory facilities and networks for shared experimental research addressing Over-the-Air (OTA) testing, IoT, localisation, tracking and radio access, using a shared web platform.
- 3. facilitate the collaboration between ECIs through STSMs (12 missions over the GP)





- 4. establish or maintain liaisons with international standardisation bodies, via the identification of liaisons and invited speakers at each IRACON technical meeting: the MIMO OTA Sub-Group (MOSG) of CTIA, the RAN4 of 3GPP that pursue standardised OTA tests for LTE User Equipment, the ETSI Technical Committee on ITS, and the URSI Commission C, among others.
- 5. maintain on-going links with existing H2020 projects (Clear5G, 5G-car, etc.), by organizing one joint workshop in the grant period (at EuCNC 2018).
- 6. train ECIs through the organization of two training schools, with a focus on 5G waveforms and on the transmission of small information quantities in dense networks (both covering aspects going from theory to practice)
- disseminate IRACON position and results via the ongoing publication of a newsletter, the animation of a blog and the issue of one position paper (white paper) on experimental platforms for performance evaluation; the organization of at least two special sessions/workshops at international conferences (EuCNC, EuCAP, PIMRC).
- 8. define radio channel models to cover gaps in existing models, in particular for the mmWave band and for localization
- 9. propose new schemes at PHY and MAC layers for 5G, with a focus on interference mitigation, ultra low power and latency.
- 10.discuss COST gender policy through women-only meetings at MC meetings, with recommendations to the COST office.
- 11. discuss the content of the final book of the Action and identify key editors.

### 1.3 Working Groups: structure and coordination

The development of 5G-and-beyond systems requires the joint consideration of all aspects related to the exploitation of radio resources: from the radio channel to the PHY, MAC and Network layers. The techniques envisioned for future wireless standards are in fact so revolutionary that they have impact on many separate aspects of the Radio Access Network (RAN). Massive MIMO and beamforming are good examples of this, as these techniques, implemented at the PHY layer, will heavily impact the strategies implemented for radio resource control at MAC and Network layers, and in turn are strongly dependent of the characteristics of the radio channel. Therefore, research developments on radio channel characterisation, PHY, MAC and NET layers need to be suitably coordinated. IRACON is organised into three Disciplinary Working Groups (DWGs) respectively dealing with the radio channel, PHY as well as MAC/NET layers. Meetings will be organised in such a way that a proper coordination of activities among the three DWGs is achieved, namely via joint sessions regrouping documents with overlapping interests. This coordination ensures that new techniques developed within IRACON are jointly devised and assessed from all viewpoints.

Moreover, this coordination of research efforts is further demonstrated within IRACON by the creation of four Experimental WGs (EWGs) that will address specific topics through a transversal approach; experimental facilities will be made available by institutions to IRACON participants in order to test new algorithms, techniques and protocols in real-world contexts, enabling a





coordinated effort among experts of separate disciplines, as complex test beds need a variety of suitably joint and coordinated competences. Coordination among theoretical and experimental activities will be ensured through a backand-forward principle: new ideas, novel techniques envisioned within the DWGs will be considered as candidates for their testing on the experimental facilities made available within the EWGs. At the same time, real-world experiments conducted within the EWGs will provide useful databases of measurements for the theoretical activities brought forward within the DWGs.

### 1.4 Working Groups: practical implementation

As mentioned, IRACON technical content is organised in Working Groups (WGs) to facilitate the coordination and networking between participants. During technical meetings many of the sessions deal with several of the WGs' interests, being identified as "joint" sessions in such sense.

Every IRACON participant is at least interested in two types of WG: one disciplinary WG, on the basics of (WG1) Radio Propagation and Channel Modelling, (WG2) Communications Physical Layer and (WG3) Radio Network Aspects; plus one Experimental WG related to application scenarios and testbeds: (EGW-LT) Location and Tracking, (EWG-IoT) Internet of Things, (EGW-RA) Radio Access Systems, (EGW-OTA) Over-the-Air Testing.

Essentially, the relationship between the Disciplinary WGs (DWGs) and the Experimental WGs (EWGs) is based on the fact that every of the new algorithms, techniques and protocols developed in the context of a DWG is suitable to be tested in some of the application scenarios described by the EWGs, and on this basis the technical meetings and the discussions are organised. On the other way round, experiments conducted within the EWGs will provide useful feedback and databases of measurements for the theoretical activities brought forward within the DWGs.

### 1.5 Final Book overview

This book will present the latest research results and remaining questions in the area of 5G (and beyond) networks. It will cover fundamental problems (e.g. radio propagation) as well as application-specific challenges (e.g. IoT in healthcare). After reading this book, the reader will have an up-to-date knowledge of the current progress and future directions of 5G wireless networks in their most inclusive aspects (and not only for cellular 5G). Topics discussed in this book include:

- Radio propagation modeling and tools
- Wireless channel measurements for 5G systems
- IRACON channel model for 5G
- Over-the-air testing for 5G
- Coding and signal processing for 5G systems
- 5G network architectures
- Internet-of-Things protocols, architectures and applications (including healthcare)
- Localization and tracking in 5G wireless systems.





### 2. DWG1: Radio Channels

### 2.1 General aspects of DWG1 work

The goal of DWG1 is to develop more accurate radio channel models for inclusive deployment scenarios (including but not limited to heterogeneous cells, body area networks and vehicular communications), using carrier frequencies above UHF up to Terahertz as well to co-develop antenna systems that can cope with the inclusive aspects of the targeted deployments.

DWG1 is chaired by Sana Salous and Katsuyuki Haneda.

### 2.2 Technical progress

In the area of **channel sounding and measurements**, the following major technical trends have been observed.

- New channel sounders are developed in different institutions, mainly for the purpose of dynamic, real-time and mm-wave channel sounding.
- Many MIMO and millimetre-wave channel sounding campaigns are reported to complement the measured evidence of radio links and their further improvement. The former includes massive MIMO, distributed MIMO and multi-user MIMO sounding. The latter covers scattering from walls, building entry loss, clutter loss and polarization.
- Extensive vehicular-to-X measurements were reported at various frequencies including millimetre-waves due to relevance to 3GPP channel modelling. The measurements cover highway and street intersection scenarios, among others.
- Channel sounding in industrial scenarios, including MIMO and ultrawideband measurements, attracted attention due to relevance to 3GPP channel modelling.
- Radar measurements of, e.g., cars and drones, are found of importance for intelligent transportation.

Concerning **radio wave propagation and channel modelling**, the following trends can be mentioned:

- Geometry-based stochastic channel models are one of the key approaches to generate realistic channel responses for radio system design. They are further developed to cover different scenarios, e.g., for a vehicular scenario and massive MIMO channels. The latter is based on the COST2100 channel model framework.
- Site-specific radio propagation simulations are another popular approach of channel modelling, realized mainly by ray-optical simulations of radio wave propagation. New physical models of wave propagation are devised such as human blockage losses, field scattering





on rough surfaces and penetration through vegetation.

- Improvement of several standard channel model, e.g., ITU-R shortrange outdoor pathloss model (P.1411-9), cluster delay line model of 3GPP NR and terrain clutter loss models, are suggested.
- Many works report insights into wave propagation based on analytical, experimental and numerical studies. The insights cover diffuse scattering, signal blockage, shadowing and diffraction. Their mathematical and statistical models are also proposed through clustering, room reverberation, graph and transport theory.
- Several studies focus on frequency dependency of radio channel characteristics, e.g., pathloss, delay spread, power angular profile, diffuse scattering, showing no apparent frequency dependency except for pathloss.

Finally, in the area of **channel simulations and prediction**, the main results are as follows.

- Radio link performance of new application scenarios was extensively studied based on computer simulations. The scenarios cover for example massive MIMO, air-to-ground, dynamic on-body, off-body, vehicular-to-infrastructure, intra-vehicular and backhaul long-range communications. The simulations also cover very wide range of frequencies up to sub-millimetre-wave frequencies.
- EMF exposure evaluation is also performed in addition to radio link performance evaluation.
- Various techniques are reported to improve efficiency and accuracy of radio channel simulations/predictions. The former includes computational acceleration techniques of ray-tracing while the latter addresses impacts of environmental database on the simulation accuracy.

The following are the main highlights of DWG1 reports and events during the third year.

- Organization of a joint IET/IRACON in EUCAP 2019 in Krakow.
- Two convened sessions have been proposed for the chairs of convened sessions in EuCAP 2020 (1) IRACON Spectrum Sharing: challenges and opportunities for 5G and beyond, (2) IET & IRACON Propagation measurements and modelling for 5G and beyond
- Contributions to the International Telecommunications Union, Radiocommunications, Study Group 3, ITU-R SG3 from the United Kingdom, regarding stationary distance (ITU-R P. 1407), rms delay spread (ITU-R P. 1238), and path loss in various indoor and residential environments (ITU-R P. 1238 and ITU-R 1411) all in the millimetre wave band for future 5G systems were submitted in March 2018 and 2019 and approved in 2019. Also input from the UK contributed to the site general path loss model submitted to the ITU as input from Correspondence Group CG 3K-6 for suburban environments for line of sight, non-line of sight, above and below rooftops. A document on measurements carried out at JRC in collaboration with Durham University on joint building entry





loss and clutter loss was was also submitted to the meeting in May 2019. A document on the impact of precipiation on mm wave propagation was also submitted to the meeting in May 2019. The various contributions which proposed modifications/additions to the recommendations were approved in the updated or new recommendations;

- > ITU-R P.1238-10 https://www.itu.int/rec/R-REC-P.1238/en
- ITU-R P.1411-10 <u>https://www.itu.int/rec/R-REC-P.1411/en</u>
- ITU-R P.1407-7 <u>https://www.itu.int/rec/R-REC-P.1407/en</u>
- ITU-R P. 2109-0 <u>https://www.itu.int/rec/R-REC-P.2109/en</u>
- ITU-R P. 2108-0 <u>https://www.itu.int/rec/R-REC-P.2108/en</u>

Collected data in residential outdoor environments and rain statistics collected during one year in the UK were submitted to the data bank of the ITU.

- Three sessions and a tutorial have been proposed and approved for the General Assembly of URSI Commission C on Radiocommunication Systems and Signal Processing,
- Liaison with the European Union Horizon 2020 project WAVECOMBE;
- A number of opportunities for dissemination are organized in DWG1, e.g., special issues of radio science and ITU journal.





### 3. DWG2: PHY Layer

### 3.1 General aspects of DWG2 work

DWG2 focuses on a very wide area of PHY layer related aspects in wireless communication networks. It includes all issues related to coding, signal processing, estimation and decoding, HW imposed constraints and solutions, distributed processing in wireless networks. This huge diversity of areas together with a limited number of researches involved affects the form and the focus of the research results.

The areas and some selected achievements that were addressed during the third period are in the next section. DWG2 is quite diverse and in principle quite universally applicable and the results form rather tools than 'turn-key' solutions.

DWG2 is chaired by Hanna Bogucka and Jan Sykora.

#### 3.2 Technical progress

The WG2 scope is very wide, so the actual research contributions form a large number of building blocks (generally applicable in many scenarios) rather than one solid piece of the research target. Despite the wide range of topic, there are clearly emerging two common principles present in the majority of WG2 work - massive MIMO and cooperative algorithms (signal processing, coding, decoding) The major achievements of the last reporting period are summarized here.

- Cooperative coding and signal processing channel state estimation for wireless physical layer coded systems (non-pilot based channel state estimation in physical-layer network coded communications (PLNC)), throughput optimisation in relay based communication network (optimisation of BLER in relay based cooperative communication), iterative interference cancelation for non-orthogonal waveforms, application of machine learning approaches to PHY signal processing, low rank channel estimation for multi-antenna systems, various forms of HW aided processing (iterative analogue-HW aided detection, RF domain aided precoding), sparse channel matrix channel detection and estimation for PLNC, PLNC with bit-wise mapped H-SODEM and iterative dual-loop decoding.
- Massive MIMO distributed beamforming for massive MIMO, capacity optimisation technique for uplink M-MIMO with distributed access points with quantised backhaul links.





### 4. DWG3: NET Layer

### 4.1 General aspects of DWG3 work

The goal of DWG3 is to investigate the NET layer aspects that will characterise the merger of the cellular paradigm and the IoT architectures, in the context of the evolution towards 5G-and-beyond. In particular, the following objectives will be pursued : 1) identifying and assessing the network architecture of 5G-andbeyond systems; 2) studying the impact of the "fog" networking/computing approach foreseen for 5G, on the evolution of the RATs; 3) evaluating radio resource management approaches compatible to the new requirements set by future mobile radio networks (e.g. on latency); 4) proposing new concepts and paradigms to take account of the plethora of new applications arising from the IoT context.

During the first Management Committee Meeting, DWG3 attendees agreed in the main keywords of the working group. Considering the research papers discussed at the sessions, but also the research activity of the members, as well as topics from the Radio Networks Group of the past COST IC1004 action, we grouped into six main "umbrella" topics:

- 5G and beyond Networks architecture
- RRM & scheduling
- Protocols
- Spectrum management and sharing
- SDN and NFV
- Scenarios

A second list of subtopics was also approved: 4G + cellular, Beamforming, Cloud RAN, Green Networks, Network architecture, Network optimization, Network planning, Network deployment, Network simulation, Network virtualization, Relaying, Scenarios, Scheduling and RRM, Small cells, Spectrum management, Spectrum sharing, Standards, Ultra-low latency, Internet of Things, Network failure management and trouble shooting.

DWG3 is chaired by Silvia Ruiz Boqué and Hamed Ahmadi.

### 4.2 Technical progress

The activity done during the third year in the technical meetings has been:

 Three technical sessions at Cartagena meeting, with 10 technical documents (TDs) that were discussed s as well as several joint sessions with other working groups and experimental working groups. 3 TDs were discussed in a joint session with Radio Access EWG, and 9 in a joint session with IoT EWG. Presented TDs on this meeting were grouped in Networks, Spectrum and Wireless sessions with research activity on predicting coverage maps, Virtual RANs, Radio Resource Slicing, Cloud-RAN, the use of date from social sources in cellular networks,





novel 5G frequency bands and spectrum sharing, resource allocation and sharing among cellular and NB-IoT, mesh networks.

- Two technical sessions at Podgorica meeting, with 8 TDs discussed as well as a joint session with Working Group 1 with 4 TDs and another with the Radio Access EWG with 3 TDs. Sessions were focused on Radio Resource Management and tools to monitor both Networks and Spectrum.
- Three sessions at the Dublin meeting, with 13 TDs to be jointly discussed. Additionally 2 TDs were discussed in a joint session with the Radio Access EWG and 4 in a joint session with IoT EWG. Presented TDs on this meeting were grouped in Cellular, WAN/MANET and Planning/Optimisation sessions, with research activity on 5G network deployment and optimisation, the prediction of moving interference sources and SIR variability, different techniques to decrease energy consumption, new SON techniques for load balancing or inter-frequency handover based on the optimisation of the QoE, measures to characterize the mutual interference of different networks working at the same frequency band, rules to improve spectrum efficiency when allocating orthogonal polarisation to nodes.

Technical progress of DWG3 was not only limited to its main areas of activities, but also had technological progress in interdisciplinary fronts too, by doing joint publications, Short Term Missions, organising special sessions at international conferences.

During this year one of the key responsibilities of the WG has been the definition of the final book structure, where WG3 has a full chapter, as well as short collaborations in other chapters. DWG3 members agreed in having the following sections, that reflect the main activity of the working group and summarize most of the 130 TDs that have been discussed so far in the WG:

- 0. Wireless connectivity. Editors: Gordana Gardašević (UNIBL) & Yoram Haddad (JCT)
- 1. Spectrum management and sharing. Editors: Paolo Grazioso (FUB) & Konstantinos Katzis (EUC) & Valeria Petrini (FUB)
- 2. Scheduling and RRM (12 TDs) Editors: Kemal Özdemir (IMU) & Arie Reichman (RAC)
- 3. HetNet and UDN. Editors: Sergio Fortes (UMA) & Rui Paulo (UBI) & Fernando Velez (UBI)
- 4. CRAN Editors: Mojgan Barahman (IST-UoL) & Luis M. Correia (IST-UoL)
- 5. SDN and NFV Editors: Luis M.Correia (IST-UoL) & Behnam Rouzbehani (IST UoL) & Hamed Ahmadi (UCD/UEX)
- UAVs (15 TDs) (5 pages) Editors: Margot Deruyck (UGent) + Silvia Mignardi (UniBo) & Roberto Verdone (UniBo)+
- 7. Application domains/ solutions. Editors: Karim Nasr (UoG) & Haibin Zhang (TNO)





Chapter editors will be Hamed Ahmadi and Silvia Ruiz as WG3 chairs. It is important to remark that there are 20 WG3 members from 16 different institutions collaborating in the chapter writing, which reflects the strong relationship in research that has been developed during the Action.





### 5. EWG-OTA: Over-The-Air Testing

### 5.1 General aspects of EWG-OTA work

The goal of this EWG is to investigate and validate new OTA testing methods, channel models (in coordination with DWG1) for implementation in advanced OTA testing set-ups for inclusive networks (large objects, small ad-hoc networks, adaptive networks, etc.).

EWG-OTA is chaired by Wim Kotterman and Moray Rumney.

#### 5.2 Technical progress

Compared to the second year of the Action, despite all the progress 3GPP made in standardising 5G New Radio, in topics crucial to OTA testing, progress in 3GPP was limited to line-of-sight cable replacement methods, and the more challenging environments with multi-signal beamsteering remain unaddressed. In the context of channel models, especially in relation to mobility, developments in standardisation even seem to have stalled. They are part of the scope of current studies but unlikely to be addressed soon, that is, not before the end of the Action. The consequence without actual questions, similar to ones pertinent to LTE to address, is that the investigations remain of a conceptual nature.

This does not mean the EWG did not make any progress in OTA research. Given the fact that for 5G NR no RF interfaces are specified that would have allowed for cabled testing, apart from being close to pointless at millimetrewave bands, attempts are made to test operation of especially antennas and antenna arrays. Aspects to be tested are among others the presence of faulty elements in large/massive arrays and the effective beam shape and beam angle agility of such arrays. Test practices themselves are improved and supplemented. The action has seen the presentation of a novel method for emulating dynamic angle of arrival for testing beamsteering which is hoped will be presented to 3GPP before the end of the action. Especially the influence of finite measurement chambers for antenna arrays with potentially large far-field distances, the specification of the number of RF channels in 3D channel emulation, and the metrics to evaluate the accuracy of different emulation strategies can be determined by simulations.

In that respect, the situation with lack of experimental millimetre-wave facilities, as noted in earlier reports, has not improved. It is worthwhile noting that most of the institutions participating in IRACON can only acquire equipment in the context of dedicated projects. Application for projects against the background of hesitating standardisation is not likely to be successful, although a recent contribution indicates dual use of a 5G reference radio system developed inhouse.





### 6. EWG-IoT: Internet-of-Things

#### 6.1 General aspects of EWG-loT work

The goal of EWG-IoT is to support the evolution of 5G networks through the inclusion of the IoT component, via the investigation and assessment of the network architectures, the comparison among the many approaches currently devised for the development of an ecosystem of the IoT platforms and applications in terms of operating systems, and the experimental validation of different protocols for large scale applications of the IoT. The SWG: IoT-Health (Sub Working Group – Internet of Things for Health) as part of EWG-IoT aims to focus on the design, development, performance evaluation and experimentation of IoT in healthcare applications such as health monitoring and Telemedicine.

EWG-IoT is chaired by Erik Ström and Chiara Buratti, while the SWG IoT-Health is chaired by Kamran Sayrafian and Slawomir J. Ambroziak.

#### 6.2 Technical progress

During the third year, EWG-IoT presented 7 TDs in Cartagena, 6 TDs in Podgorica and 8 TDs in Dublin. For Sub-WG IoT-Health there were 5, 4 and 7 TDs, respectively.

The main research topics and trends of the EWG-IoT briefly summarized below.

- Vehicular Communications and UAV-aided Networks. The research related to vehicular communications mainly focused on the performance analysis of the IEEE 802.11p standard in urban interference channels. By linking a network simulator to a software defined radio setup, communication performance measurements in the worst-case interference scenario caused by an urban traffic jam, are derived. As far as UAV networks is concerned, the research was devoted to the design of joint design of dynamic trajectories and Radio Resource Management strategies, such as to the definition of an Integer Linear Programming model aiming at maximizing the number of served users, while considering constraints on UAV battery, speed, data rate and radio resources that the UAV can provide to the users. Finally, beamforming has been proposed to improve mmWave link budget between the UAV and users and to decrease possible interference caused by the UAV on the terrestrial network.
- **SDR platform for IoT**. A fully functional prototype for a low-cost satellite gateway based on an embedded Software Defined Radio platform has been designed. The prototype is able to route data between the satellite and IoT devices using standard technologies like 802.11b/g/n, ZigBee, BLE, etc. Other research was dedicated to the development of a new real-time multi-threading operating system, implementing a microkernel architecture supporting a wide range of IoT devices.





- Routing and MAC protocols for Industrial IoT. The research was devoted to the implementation of Source Routing Minimum Cost Forwarding (SRMCF) protocol over IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH). Different kind of experimental results related to packet losses and round trip time, obtained using the OpenMote-B platform, have been reported in different TDs.
- Low Power Wide Area Networks. Some works dealt with the experimental characterization of point-to-point LoRa links in different environments, such as the analysis of the LoRa capture effect and the performance of LoRa Geo-location for outdoor tracking purposes. For what concerns the research related to NB-IoT, a mathematical model of the access mechanism to predict the best performance obtainable in a given scenario with a specific configuration of some of the design parameters, has been proposed. The suitability of NB-IoT for smart grid applications was also investigated, concentrating on the reliable and timely delivery of outage restoration and management messages at the event of a local or regional power outage.

The EWG-IoT in this third year organised the following events:

- Workshop on "Vertical Industries & Services for 5G (VIS5G)", EUCNC 2018, June 18-21, Ljubljana, Slovenia. Organizers: Woon Hau Chin, Erik G. Ström, Chiara Buratti, Laura Baracchi, Stephanie Parker, Mikael Fallgren, Belkacem Mouhouche.
- Workshop on "UAV Communications for 5G and Beyond", PIMRC 2018, Sept. 9-12, Bologna, Italy. Organizers: Chiara Buratti, Adrian Garcia-Rodriguez, Gianluigi Ferrari, Ming Ding.
- Special Session on "UAVs for Future Wireless Networks", PIMRC 2018, Sept. 9-12, Bologna, Italy. Organizer: Chiara Buratti
- A joint WG2 EWG-IoT training school on "ITSP (Information Theory and Signal Processing) for IoT" took place in Lyon on November 18-22, 2018. The training school included a theoretical part, dealing with bursty multiuser communication and standard for the IoT, and lab activities, where students will have the possibility to use the FIT/CorteXlab facilities.

The main research topics discussed at the SWG IoT-Health are also summarized below.

- Radio channel modelling in Body Area Networks: Wearable and implantable sensors or actuators in body area networks are fundamental component of IoT-Health. This research focuses on statistical modelling of radio channels inside, on the surface and in the vicinity of the human body. During the second year, a dynamic channel model for off-body communications and a motion model for wearable antennas in body area networks have been developed. A simple model for body shadowing in off-body and body-to-body channels has also been proposed. New empirical results have been achieved for different static and dynamic scenarios in a ferry environment at 868 MHz and 2.45 GHz. The latter is the result of joint research activities between GUT and IST.
- Adaptive energy detection threshold in Body Area Networks:





Several low complexity strategies to adaptively control the energy detection threshold in IEEE802.15.6 have been proposed. These strategies can be used to enhance the QoS performance in scenarios with multiple adjacent Body Area Networks.

- Localisation of UWB capsule endoscopy: This research focuses on techniques based on the received signal strength for two-dimensional localisation of a capsule endoscopy using Ultra-Wideband (UWB) communication. The project also includes a novel two-layer experimental liquid phantom to obtain physical measurements and assess the achievable localisation accuracy.
- RF Exposure & SAR Evaluation: The objective of this research was validation of a computational model for SAR evaluation of wireless devices. Additionally, using a multi-band body-worn distributed exposimeter, the effect of human morphology on the measurement uncertainty was investigated. Also, the results of in-situ determination of downlink signal levels emitted by GSM 900, GSM 1800, UMTS, and LTE networks in urban areas and the corresponding body exposure were presented.
- IoT-Health Supporting Services & Infrastructure: A heterogeneous IoT-based architecture for remote monitoring of physiological and environmental parameters employing Bluetooth and IEEE 802.15.4 wireless protocols has been presented. Healthcare applications in the resulting crowdsensing environment have been discussed. In addition, an alternative methodology to create computationally efficient procedures for unsupervised processing of the data in resource-limited environments has been proposed. Finally, the idea of using TV white spaces to establish a healthcare network infrastructure for wide area remote monitoring has been discussed.
- **IoT-Health for Animals**: A wireless communication system based on an IoT architecture for tracking and monitoring dairy cows has been proposed. This research provides experimental results indicating the accuracy and efficiency of the proposed system.
- **Nanocommunications**: This research focuses on molecular communication using Foerster Resonance Energy Transfer (FRET) mechanism. Preliminary models of the communication system along with analysis of the achievable throughput and bit error rate have been provided. Molecular communication provides an alternative approach for in-body medical applications.

In the third year, the SWG IoT-Health organised a joint COST IRACON & H2020 WIBEC Project workshop titled "WIreless Body COMunications in Medicine (WIBCOMM)". The workshop was held along with the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Sept. 9-12, 2018, Bologna, Italy. In addition, a convened session titled "COST Action CA15104 (IRACON): Measurements and Simulations and Channel Modelling in Wireless Body Area Networks," was organised during EuCAP in Krakow, Poland, on 31.03.-05.04.2019, and one session titled: "IoE and Health Applications," was organised during 18th





International Symposium INFOTEH-JAHORINA, Jahorina, RS, B&H, 20-22.03.2019.

The following two STSMs were also completed during the third period: "Simulation of polarised off-body channels with dynamic users" (18.02.2019–01.03.2019, GUT to IST); and, "Communication interfaces for medical chips in patients' bodies suitable for early detection of infections" (29.03.2019–10.04.2019, AGH to UPCT).





### 7. EWG-LT: Localisation and Tracking

### 7.1 General aspects of EWG-LT work

The goal of this EWG is to follow the development of 5G standardisation, taking advantage of the new techniques implemented and defined (millimetre waves, massive MIMO, etc.) to design and test new localisation and tracking techniques for devices, working both in outdoor and indoor environments.

EWG-LT is chaired by Carles Anton-Haro and Klaus Witrisal.

### 7.2 Technical progress

During the third year, the EWG-LT has organized several sessions at the Cartagena, Podgorica, and Dublin meetings. The number of TDs presented were eight, five and nine, respectively. Besides, a number of joint activities (special sessions, workshops, whitepapers, etc) were undertaken by several IRACON partners. The technical sessions were in general well attended (at least 30 participants at each meeting), regularly leading to interesting and lively discussions.

As far as research activities are concerned, priority has been given to the following areas in the third year of IRACON:

- Localization and positioning techniques for 4G and 5G communication networks and the IoT: Different wireless technologies have been investigated regarding their potential use for positioning. The presented papers include a system-level performance study for a vehicular environment looking at placement of roadside units for positioning, sensor fusion and tracking filters exploiting 3G / 4G cell measurements as well as LoRA measurements, and a machine-learning-based beam selection scheme working with AoA data. Novel scenarios and system approaches have been discussed, for instance the use of wireless communications systems for passive radar with an intended use in vehicular scenarios to detect vulnerable road users such as pedestrians and cyclists.
- Channel modelling, propagation and positioning; modeling of measurements: Several papers investigated measurement modeling and related positioning algorithms, strongly focused on the radio channel influence. Measurement parameters analyzed include ToA, AoA, and RSS and the scaling with respect to system parameters such as bandwidth and number of antennas and also radio channel parameters. Furthermore, measurement acquisition techniques have been presented, ranging from array-based multipath parameter estimation techniques for positioning, array-based RSS measurements using BLE,





to radar signal processing with 1 bit quantization.

• Multipath-assisted positioning and data fusion techniques have again been a topic in various contributions. Multipath assisted positioning would make use of the geometry of reflected, deterministic multipath components, leading to a potential reduction in the infrastructure needed and an enhancement of the robustness. The exchange of map information in SLAM algorithms has been discussed to exploit map information from users that already explored a certain environment previously. Another SLAM algorithm has been presented on the basis of current 4G LTE signals, demonstrating the applicability of the multipath-assisted localization approach to wireless technologies that are alread in use.

As for joint activities, a Seminar on Localization was organized jointly by the IRACON action and the Marie Curie ITN WiBEC (Cartagena; 29-5-2018), consisting of three extended presentations entitled "High-accuracy Positioning in Multipath Channels" by Klaus Witrisal (TU Graz, Austria); "Cooperative Positioning for Real Time Location Systems (RTLS)" by Monica Navarro (CTTC, Spain); and "Positioning and localization of mobiles in rich multipath scenarios" by Davy Galliot (U. Lille, France). Besides, a double special session on "Localization in Current and Emerging Networks" was organized at IEEE WCNC'18 (by UAB, Chalmers, and DLR).

In addition, a **White Paper** on "Localization Techniques for 5G and the IoT" was produced by the EWG-LT, as reported in Deliverable 5, and finally published in April 2018. The two EWG chairs acted as editors and it was authored by 43 IRACON members and non-members. The White Paper has been posted on IRACON's website and in other repositories like Research Gate, where it has meanwhile received a good visibility within the scientific community. Specifically on Research Gate, the White Paper has achieved 2300 read and more than 700 downloads as of May 29, 2019. From the IRACON website, the White Paper has been downloaded a significant number of tmes.

Complementarily, substantial work has been done towards the preparation of the **book chapter in IRACON's final book**. This has resulted into a stable table of contents with the following sections and appointed section editors:

- 1. Introduction (Carles Anton, CTTC; Klaus Witrisal, TU Graz)
- 2. Measurement acquisition, measurement modeling, and performance limits (Stefan Grebien, Thomas Wilding, both TU Graz)
- 3. Position estimation methods, data fusion, and tracking (David Plets, Joseph Wout, both U. Gent)
- 4. Multipath exploitation and modeling (Erik Leitinger and Xuhong Li, Lund U. and TU Graz)
- 5. System study, system-level performance analysis and performance limits (Jose del Peral, UAB; and Jordi Vilà-Valls, Supaero)
- Testbed and prototyping activities (Carles Anton, CTTC; Klaus Witrisal, TU Graz)

and the preparation of an interim draft including the all the TDs presented in the meetings of the COST Action so far (Brussels, Lille, Durham, Lisbon, Lund,





Graz, Nicosia, Podgorica and Dublin). Selected parts of the whitepaper (introduction, testbeds and experimental platforms) have also been adapted and included in the book chapter.

Finally, a number of **papers jointly authored** by researchers from more than one IRACON partner have been published during this reporting period.





### 8. EWG-RA: Radio Access

### 8.1 General aspects of EWG-RA work

The goal of this EWG is to experimentally validate the many techniques that will be implemented at the PHY and MAC layers of the radio access part of 5G, especially those developed within DWG2. New waveforms, cognitive radio approaches, or massive MIMO, are possible examples.

EWG-RA is chaired by Florian Kaltenberger and Mark Beach.

#### 8.2 Technical progress

The activities of this EWG were in practice merged with other WGs, as the number of TDs did not warrant specific EWG-RA sessions. The members of the WG will also contribute to the various chapters of the Final Book, when experimental testbeds are to be discussed.





### 9. Conclusions and Perspectives

### 9.1 Conclusions

During its third year, the various Working Groups have continued working towards the objectives of the Action. As described in the previous sections, all WGs are progressing according to plan and have completed the assigned objectives for the third grant period.

The following table illustrates the achievements over the third GP as compared to the GP objectives detailed in Section 1.

| 1 | Discuss and review future architecture<br>and protocols for the Internet of Things<br>(including the production of one<br>deliverable)                                                                                               | Covered by EWG-IoT (see Section 6)                                                                                                                                                                                                                                            |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2 | Promote the use of pan-European<br>laboratory facilities and networks for<br>shared experimental research<br>addressing Over-the-Air (OTA) testing,<br>IoT, localisation, tracking and radio<br>access, using a shared web platform. | Updated list now online<br>http://radiokom.eti.pg.gda.pl/IRM/                                                                                                                                                                                                                 |  |  |
| 3 | Facilitate the collaboration between<br>ECIs through STSMs, with at least 6<br>missions over the Grant Period (GP)                                                                                                                   | 16 STSMs submitted, 11 STSMs funded                                                                                                                                                                                                                                           |  |  |
| 4 | Establish or maintain liaisons with international standardization bodies                                                                                                                                                             | <ul> <li>On-going action (members of IRACON are active members of the MIMO OTA Sub-Group of CTIA and the 3GPP RAN4)</li> <li>Contribution to ITU-R SG3 (see Section 2.3)</li> <li>IRACON liaisons:</li> </ul>                                                                 |  |  |
|   |                                                                                                                                                                                                                                      | <ul> <li>→ 3GPP – Aki Hekkala</li> <li>→ URSI – Sana Salous</li> <li>→ ITU-R – Sana Salous and Belen Montenegro</li> <li>→ IEEE 1900.6 – Kostas Katzis</li> </ul>                                                                                                             |  |  |
| 5 | Maintain on-going links with existing<br>H2020 projects (Clear5G, 5G-car,<br>etc.), by organizing one joint<br>workshop in the grant period (at<br>EuCNC 2018).                                                                      | <ul> <li>Joint EuCNC workshop with Clear 5G</li> <li>IRACON liaisons:         <ul> <li>→ H2020 METIS-II – Narcis Cardona</li> <li>→ H2020 mmMAGIC – Mark Beach</li> <li>→ H2020 5G X-haul – Mark Beach</li> <li>→ CommNet (EPSRC network) – Mark Beach</li> </ul> </li> </ul> |  |  |

→ ITN WiBEC – Narcis Cardona



6

7

8

9

10

11

meeting.

localization

and latency.

blog



- → 5G-VINNI Per Hjalmar Lehne
- → 5G-HEART Per Hjalmar Lehne
- → 5G-EVE Florian Kaltenberger
- → EMPOWER Per Hjalmar Lehne
- ➔ 5G initiative Fernando Velez

Three training schools were organized during the second grant period

- → <u>http://www.iracon.org/training-</u> schools/
- Publication of quarterly newsletters
   <u>http://www.iracon.org/newsletters/</u>
- Animation of an online blog
  - <u>http://www.iracon.org/blog/</u>
- Publication of two white papers
- → <u>http://www.iracon.org/whitepapers/</u>
- Organization of workshops
   <u>http://www.iracon.org/workshops/</u>
- Organization of special sessions (e.g. at EuCAP2019)
  - → <u>http://www.iracon.org/special-sessions/</u>

See Section 2

See Sections 3 and 4

The newsletters often highlight the role of women within the Action.

IRACON also participated to the online action organized by the COST office (movie)

On-going (see Section 1).

#### 9.2 Perspectives for the fourth grant period

Train ECIs through the organization of

Disseminate IRACON position and

results via the ongoing publication of a

newsletter, the animation of a blog and

the issue of one position paper (white

paper) on new localization techniques

suitable for 5G and the Internet of

Things; the organization of at least two

special sessions at international

conferences (EuCNC, EuCAP); the

organization of one full-day IRACON

workshop in conjunction with an MC

Define radio channel models to cover gaps in existing models, in particular

Propose new schemes at PHY and MAC layers for 5G, with a focus on

interference mitigation, ultra low power

Discuss COST gender policy through

women-only meetings at MC meetings,

with inputs to the newsletter or to the

Discuss the content of the final book

of the Action and identify key editors.

for the mmWave band and for

two training schools

In the next period, IRACON will intensify its activities, in particular with respect to scientific dissemination. The GP objectives have been set as follows:

- promote the use of pan-European laboratory facilities and networks for shared experimental research addressing Over-the-Air (OTA) testing, IoT, localization, tracking and radio access, using a shared web platform;
- facilitate the collaboration between ECIs through STSMs (at least 6 missions over the GP);





- 3. provide technical inputs and liaison statements to Standardisation Groups on metrics for Over the Air (OTA) testing;
- 4. finalize a set of IRACON concerted radio channel models for 5G and beyond;
- maintain liaisons with international standardisation bodies, via the identification of liaisons and invited speakers at each IRACON technical meeting: the MIMO OTA Sub-Group (MOSG) of CTIA, the RAN4 of 3GPP that pursue standardised OTA tests for LTE User Equipment, the ETSI Technical Committee on ITS, and the URSI Commission C, among others;
- 6. maintain on-going links with existing H2020 projects (Clear5G, 5G-car, etc.), by organizing one joint workshop in the grant period;
- 7. train PhD students through the organization of at least two training schools, with a focus on the network layer;
- disseminate IRACON position and results via the ongoing publication of a newsletter, the animation of a blog and the issue of one position paper (white paper) on experimental platforms for performance evaluation; the organization of at least two special sessions/workshops at international conferences (EuCAP, PIMRC);
- 9. write the final book of the Action;
- 10. discuss COST gender policy through women-only meetings at MC meetings, with recommendations to the COST office.





## **Annex: List of Temporary Documents**

|    | TD number   | Title                                                                                                                                  | Authors                                                                                                                                                      |
|----|-------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | TD(18)07001 | An Empirical System Loss Model for<br>Body Area Networks in a Passenger<br>Ferry Environment                                           | Pawel T. Kosz, Slawomir J.<br>Ambroziak, Jacek Stefanski,<br>Krzysztof K. Cwalina, Luis M.<br>Correia, Kenan Turbic                                          |
| 2  | TD(18)07002 | An Off-Body Narrowband and Ultra-<br>Wide Band Channel Model for Body<br>Area Networks in a Ferry Environment                          | Krzysztof K. Cwalina,<br>Slawomir J. Ambroziak, Piotr<br>Rajchowski                                                                                          |
| 3  | TD(18)07003 | Mobile Device for Generating<br>Electromagnetic Curtain for Special<br>Applications                                                    | Piotr Rajchowski, Slawomir J.<br>Ambroziak, Krzysztof K.<br>Cwalina, Jaroslaw Magiera,<br>Pawel T. Kosz                                                      |
| 4  | TD(18)07004 | Multipath Fingerprints Exploitation to<br>Enhance Localization Performance in<br>TDoA Systems                                          | Marcelo Nogueira de Sousa,<br>Reiner Thomä                                                                                                                   |
| 5  | TD(18)07005 | LoRa-like CSS-based PHY layer,<br>capture effect and Serial Interference<br>Cancellation                                               | Umber Noreen, Laurent<br>Clavier, Ahcène Bounceur                                                                                                            |
| 6  | TD(18)07006 | Millimeter Wave Multi-User<br>Performance Evaluation Based on<br>Measured Channels With Virtual<br>Antenna Array Channel Sounder       | Allan Wainaina Mbugua, Wei<br>Fan, Yilin Ji, Gert Frølund<br>Pedersen                                                                                        |
| 7  | TD(18)07007 | Assessment of the Suitability of NB-IoT<br>Technology for ORM in Smart Grids                                                           | Varun Nair, Remco Litjens,<br>Haibin Zhang                                                                                                                   |
| 8  | TD(18)07008 | Modelling and Evaluation of Uplink and<br>Downlink KPI Variations using<br>Information Bottleneck and Non-<br>parametric<br>Hypothesis | Taulant Berisha and<br>Christoph F. Mecklenbräuker                                                                                                           |
| 9  | TD(18)07009 | Theoretical and Experimental Study at 60 and 94 GHz in Indoor Environments                                                             | Maria-Teresa Martinez-<br>Ingles, Davy Gaillot, Juan<br>Pascual García, Jose-Maria<br>Molina-Garcia-Pardo, José-<br>Víctor Rodríguez, Leandro<br>Juan Llácer |
| 10 | TD(18)07010 | Evaluation of an antenna selection<br>strategy for reduced massive MIMO<br>complexity                                                  | F. Challita, M.Liénard, D.P.<br>Gaillot, M-T. Martinez-Ingles,<br>J-M. Molina-Garcia-Pardo                                                                   |





| 11 | TD(18)07011 | Flexible Multi-Numerology Systems for 5G New Radio                                                         | Ahmet Yazar, Huseyin Arslan                                                                                       |
|----|-------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 12 | TD(18)07012 | Study of coexistence between different services in novel 5G Frequency Bands                                | Claudia Carciofi, Paolo<br>Grazioso, Francesco Matera,<br>Valeria Petrini                                         |
| 13 | TD(18)07013 | A Map-Free Indoor Localization Method<br>Using Ultrawideband Large-Scale Array<br>Systems                  | Yilin Ji, Johannes Hejselbæk,<br>Wei Fan, Gert F. Pedersen                                                        |
| 14 | TD(18)07014 | Frequency Dependence of UWB In-<br>Body Radio Channel Characteristics                                      | Carlos Andreu, Concepcion<br>Garcia-Pardo, Sergio<br>Castelló-Palacios, Ana<br>Vallés-Lluch and Narcís<br>Cardona |
| 15 | TD(18)07015 | PDOA Emitter Location Using Game<br>Engines 3D Ray based Tools                                             | Andres Navarro and William<br>Cruz                                                                                |
| 16 | TD(18)07016 | Antenna Aperture Impact on Channel<br>Delay Spread in an Urban Outdoor<br>Scenario at 17 and 60 GHz        | Cheikh Diakhate, Jean-Marc<br>Conrat, Jean-Christophe<br>Cousin, Alain Sibille                                    |
| 17 | TD(18)07017 | Predicting Wireless Coverage Maps<br>Using Radial Basis Network                                            | Yisroel Mirsky, Yoram<br>Haddad, Orit Rozenblit, Rina<br>Azoulay                                                  |
| 18 | TD(18)07018 | Wireless Controller Placement Problem                                                                      | Amit Dvir, Yoram Haddad,<br>Aviram Zilberman                                                                      |
| 19 | TD(18)07019 | Implementation of Low-complexity<br>Hybrid Analogue-digital Solutions in<br>CAP-MIMO                       | Rooderson Martines de<br>Andrade, Fernando J. Velez,<br>Kun Chen, and Ana Garcia<br>Armada                        |
| 20 | TD(18)07020 | Insights on Spectrum Sharing in<br>Heterogeneous Networks with Small<br>Cells                              | Bruno C. Silva, Sofia C.<br>Sousa, Emanuel Teixeira,<br>Fernando J. Velez                                         |
| 21 | TD(18)07021 | FM Band Channel Modelling and<br>Measurements                                                              | Omar Ahmadin and Mehmet<br>Kemal Ozdemir                                                                          |
| 22 | TD(18)07022 | A Study of Polarimetric Diffuse<br>Scattering at 28 GHz in an Urban Open<br>Square                         | Pasi Koivumäki, Sinh L. H.<br>Nguyen, Katsuyuki Haneda,<br>Gerhard Steinböck                                      |
| 23 | TD(18)07023 | Measured Channel Hardening in an Indoor Multiband Scenario                                                 | Golsa Ghiaasi, Jens<br>Abraham, Egil Eide and<br>Torbjörn Ekman                                                   |
| 24 | TD(18)07024 | UWB RSS-based Localization for<br>Capsule Endoscopy using a Multilayer<br>Phantom and In-Vivo Measurements | Martina Barbi, Concepcion<br>Garcia-Pardo, Andrea<br>Nevarez, Vicente Pons,<br>Narcís Cardona                     |
| 25 | TD(18)07025 | Hierarchical Decoding with Bit-Wise<br>Soft-Aided H-SODEM and Iterative<br>Double-Loop Processing          | Jan Sykora                                                                                                        |





| 26 | TD(18)07026 | Initial UWB In-Body Channel<br>Characterization Using a Novel<br>Multilayer Phantom Measurement<br>Setup                               | Sofia Perez-Simbor, Martina<br>Barbi, Concepcion Garcia-<br>Pardo, Sergio Castelló-<br>Palacios, Narcís Cardona                  |
|----|-------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 27 | TD(18)07027 | Spatial Statistical Analysis for the<br>Design of Indoor Particle Filter based<br>Localization Mechanisms                              | Miguel Martínez del Horno,<br>Ismael García Varea and<br>Luis Orozco Barbosa                                                     |
| 28 | TD(18)07028 | Experimental Demonstration of BLE<br>Transmitter Positioning based on AOA<br>Estimation                                                | Shaghayegh Monfared,<br>Trung-Hien Nguyen, Luca<br>Petrillo, Philippe De Doncker,<br>Francois Horlin                             |
| 29 | TD(18)07029 | Characterizing and Modeling the<br>Wideband Vehicle to Pedestrian<br>Propagation Channels                                              | Gloria Makhoul, Raffaele<br>D'Errico, Claude Oestges                                                                             |
| 30 | TD(18)07030 | Network Design for Accurate Vehicle Localization                                                                                       | José A. del Peral-Rosado,<br>Gonzalo Seco-Granados,<br>Sunwoo Kim, and José A.<br>López-Salcedo                                  |
| 31 | TD(18)07031 | Resource Allocation and Sharing for<br>Heterogeneous Data Collection over<br>Conventional 3GPP LTE and Emerging<br>NB-IoT Technologies | Samouylov K. and<br>Gaydamaka Y.                                                                                                 |
| 32 | TD(18)07032 | On Simple Scattering and Diffraction<br>Models using Point Cloud Maps for<br>Channel Model or Coverage<br>Predictions                  | Jean-Frederic Wagen and<br>Karol Kruzelecki                                                                                      |
| 33 | TD(18)07033 | TAKE - Tactical Ad-Hoc Network<br>Emulation                                                                                            | Simon Ruffieux, Christophe<br>Gisler, Jean-Frederic Wagen,<br>Francois Buntschu and<br>Gerome Bovet                              |
| 34 | TD(18)07034 | An SLA-Based Method for Radio<br>Resource Slicing and Allocation in<br>Virtual RANs                                                    | Behnam Rouzbehani, Luis M.<br>Correia, Luísa Caeiro                                                                              |
| 35 | TD(18)07035 | Spatial Data Focusing: an alternative to Beamforming for geocasting scenarios                                                          | Julien Sarrazin, Michael<br>Odhiambo, Sidney Golstein,<br>François Horlin, Philippe De<br>Doncker                                |
| 36 | TD(18)07036 | Extended TDL Modeling for V2X<br>Channels                                                                                              | Nina Hassan, Martin Kaske,<br>Gerd Sommerkorn, Christian<br>Schneider and Reiner Thomä                                           |
| 37 | TD(18)07037 | Simultaneous Multi-band Indoor<br>Measurements from 6 to 60 GHz - a<br>Study on System Influence on Channel<br>Modelling               | Diego Dupleich, Robert<br>Müller, Sergii Skoblikov,<br>Christian Schneider, Jian<br>Luo, Giovanni Del Galdo, and<br>Reiner Thomä |
| 38 | TD(18)07038 | V2V/V2R Channel Measurements on a<br>Highway at 2.53GHz:<br>A Delay and Doppler Discussion                                             | Gerd Sommerkorn, Daniel<br>Czaniera, Martin Käske,<br>Christian Schneider and<br>Reiner Thomä                                    |





| 39 | TD(18)07039 | The hypervisor-based and container-<br>based virtualization in IoT environment                                                    | Borislav Djordjević, Valentina<br>Timcenko                                                                                                            |
|----|-------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40 | TD(18)07040 | Millimeter wave channel measurements in an intra-wagon environment                                                                | Vicent M. Rodrigo-<br>Peñarrocha, Lorenzo Rubio,<br>Juan Reig, Leandro Juan-<br>Llácer, Juan Pascual-García<br>and José María Molina-<br>García-Pardo |
| 41 | TD(18)07041 | Information transfer from FRET-based nanonetworks to nerve cells                                                                  | Jakub Kmiecik, Pawel<br>Kulakowski, Krzysztof Wojcik,<br>Andrzej Jajszczyk                                                                            |
| 42 | TD(18)07042 | Elaboration of Simple Gel Phantoms for<br>5G/mmWave Communications                                                                | Sergio Castelló-Palacios,<br>Reza Aminzadeh,<br>Concepcion Garcia-Pardo,<br>Günter Vermeeren, Narcís<br>Cardona, Wout Joseph, Ana<br>Vallés-Lluch     |
| 43 | TD(18)07043 | Hybrid virtual polarimetric Massive<br>MIMO measurements at 1.35 GHz                                                              | F. Challita, P. Laly,<br>M.Liénard, D.P. Gaillot                                                                                                      |
| 44 | TD(18)07044 | Specification of the Internet of Things platform for energy efficient living                                                      | Lazar Berbakov, Nikola<br>Tomašević, Marko Batić                                                                                                      |
| 45 | TD(18)07045 | Correlation-based Clustering Procedure<br>Towards Energy-Efficient Cooperative<br>Spectrum Sensing                                | Krzysztof Cichoń, Adrian<br>Kliks, Hanna Bogucka                                                                                                      |
| 46 | TD(18)07046 | Modelling Polarimetric Power Delay<br>Spectrum for Indoor Wireless Channels<br>via Propagation Graph Formalism                    | Ramoni Adeogun and Troels<br>Pedersen                                                                                                                 |
| 47 | TD(18)07047 | On Clustering in Multipath Channel<br>Models                                                                                      | Alister Burr, Katsuyuki<br>Haneda and Aki Karttunen                                                                                                   |
| 48 | TD(18)07048 | Conformal Automotive Roof-Top<br>Antenna Cavity With Increased<br>Coverage to Vulnerable Road Users                               | Gerald Artner, Wim<br>Kotterman, Giovanni Del<br>Galdo and Matthias A. Hein                                                                           |
| 49 | TD(18)07049 | Fixed link long term measurements                                                                                                 | Sana Salous, Yusheng Cao,<br>Xavier Raimundo                                                                                                          |
| 50 | TD(18)07050 | Modeling Human Blockage at 5G<br>Millimeter Wave Frequencies                                                                      | Usman Tahir Virk and<br>Katsuyuki Haneda                                                                                                              |
| 51 | TD(18)07051 | Next steps in channel modelling and OTA test methods for 5G                                                                       | Moray Rumney                                                                                                                                          |
| 52 | TD(18)07052 | Performance Evaluation of Source<br>Routing Minimum Cost Forwarding<br>Protocol over 6TiSCH applied to the<br>OpenMote-B platform | Fernando José da Silva<br>Velez; Gordana Gardašević;<br>Anderson Rocha Ramos                                                                          |





| 53 | TD(18)07053 | Use of Digital Maps in Context of Radio<br>Propagation Simulations                                                                           | Marjo Heikkilä, Aki Hekkala,<br>Ossi Saukko                                                                 |
|----|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 54 | TD(18)07054 | Measurement based ultra-wideband<br>channel model for mobile<br>communications in tunnels                                                    | Andrej Hrovat, Klemen<br>Bregar, Tomaž Javornik                                                             |
| 55 | TD(18)07055 | Localization of Scatterers in Railway<br>Environments for Train-to-Train<br>Propagation                                                      | Paul Unterhuber, Michael<br>Walter, Thomas Kürner                                                           |
| 56 | TD(18)07056 | Spatial consistency of clusters in mm-<br>wave ray-tracing results for 5G<br>communications                                                  | Manijeh Bashar, Katsuyuki<br>Haneda and Alister Burr                                                        |
| 57 | TD(18)07057 | Relative Positioning and Velocity<br>Component Estimation of Two Vehicles<br>by using the Time-VAriant, Delay-<br>Dependent Doppler Spectrum | M. Walter                                                                                                   |
| 58 | TD(18)07058 | Window loss measurements and Model Validation                                                                                                | Satyam Dwivedi, Jonas<br>Medbo                                                                              |
| 59 | TD(18)07059 | Exchanging Transmitter Maps in<br>Multipath Assisted Positioning                                                                             | Markus Ulmschneider, David<br>Calvo Luz, Christian Gentner                                                  |
| 60 | TD(18)07060 | Joint Path and Radio Resource<br>Management for UAVs Supporting<br>Mobile Radio Networks                                                     | Silvia Mignardi, Roberto<br>Verdone                                                                         |
| 61 | TD(18)07061 | Spatiotemporal Gait Variables using<br>Wavelets for an Objective Analysis of<br>Parkinson Disease                                            | Yor Castaño, Juan Arango<br>and Andres Navarro                                                              |
| 62 | TD(18)07062 | Joint Aerial-Terrestrial Resource<br>Management in UAV-Aided Mobile<br>Radio Networks                                                        | Roberto Verdone, Silvia<br>Mignardi                                                                         |
| 63 | TD(18)07063 | Wideband Channel Measurements for<br>Polarised Indoor Off-Body<br>Communications                                                             | Kenan Turbic, Slawomir J.<br>Ambroziak, Luis M. Correia,<br>Marko Beko                                      |
| 64 | TD(18)07064 | A Real-time Computational Resource<br>Management in C-RAN                                                                                    | Mojgan Barahman, Luis M.<br>Correia, Lúcio S. Ferreira                                                      |
| 65 | TD(18)07065 | A Simple Method for Robust Vehicular<br>Communication with Multiple Nonideal<br>Antennas                                                     | Keerthi Kumar Nagalapur,<br>Erik G. Stro¨m, Fredrik<br>Bra¨nnstro¨m, Jan Carlsson,<br>and Kristian Karlsson |
| 66 | TD(18)07066 | System-Theoretical Modeling and<br>Analysis of Phase Control in a<br>Photonically Steered Terahertz Phased<br>Array Transmitter              | Kevin Kolpatzeck, Xuan Liu,<br>Lars Häring, Andreas Czylwik                                                 |
| 67 | TD(18)07067 | Data from Social Sources in Cellular<br>OAM                                                                                                  | Sergio Fortes, David<br>Palacios, Inmaculada<br>Serrano, Raquel Barco                                       |





| 68 | TD(18)07068 | Polarimetric Diffuse Scattering Channel<br>Measurements at 60GHz and 26GHz                        | Alberto Loaiza, Timothy<br>Pelham, Di Kong, Lawrence<br>Sayer, Victoria Sgardoni, Fai<br>Tila, Evangelos Mellios, Mark<br>Beach, Andrew Nix, Gerhard<br>Steinböck |
|----|-------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 69 | TD(18)07069 | Tri-Band Mm-wave Directional Channel<br>Measurements in Indoor Environment                        | Enrico Vitucci, Marco Zoli, Ke<br>Guan, Franco Fuschini,<br>Marina Barbiroli, Thomas<br>Kuerner, Vittorio Degli<br>Esposti                                        |
| 70 | TD(18)07070 | Power delay profile modelling in indoor environments using the VEFIE                              | lan Kavanagh and Conor<br>Brennan                                                                                                                                 |
| 71 | TD(18)07071 | Cell-Free Massive MIMO with Limited Backhaul                                                      | Manijeh Bashar and Alister<br>Burr                                                                                                                                |
| 72 | TD(18)07072 | A unified channel model for terrestrial and non-terrestrial networks                              | Tommi Jämsä, Guo Bolun,<br>Mingming Gan, Gerhard<br>Steinböck                                                                                                     |
| 73 | TD(18)07073 | Impact of rough surface scattering on stochastic multipath component models                       | Josef Kulmer, Fuxi Wen, Nil<br>Garcia, Henk<br>Wymeersch, Klaus Witrisal                                                                                          |
| 74 | TD(18)07074 | Resource Allocation in Wireless Mesh<br>Networks                                                  | Arie Reichman, Shahaf<br>Wayer, Miri Prieser                                                                                                                      |
| 75 | TD(18)08001 | Novel Over-the-Air test method for 5G<br>mmWave devices with beam forming<br>capabilities         | David Reyes, Mark Beach,<br>Evangelos Mellios, Moray<br>Rumney                                                                                                    |
| 76 | TD(18)08002 | Resilience of airborne networks                                                                   | Hamed Ahmadi, Gianluca<br>Fontanesi, Konstantinos<br>Katzis, Muhammad Zeeshan<br>Shakir, Anding Zhu                                                               |
| 77 | TD(18)08003 | NB-IoT: Performance Estimation and<br>Optimal Configuration                                       | Luca Feltrin, Massimo<br>Condoluci, Toktam<br>Mahmoodi, Mischa Dohler,<br>Roberto Verdone                                                                         |
| 78 | TD(18)08004 | A study of the effect and mitigation of wind turbines on telemetry links and digital TV reception | Karim M. Nasr                                                                                                                                                     |
| 79 | TD(18)08005 | Indoor 1-40 GHz Channel<br>Measurements                                                           | Maria-Teresa Martinez-<br>Ingles, Juan Pascual-Garcia<br>Davy, P. Gaillot, Concepción<br>Sanchís-Borrás, Jose-Maria<br>Molina Garcia-Pardo                        |
| 80 | TD(18)08006 | Outdoor 3G Location Tracking of<br>Mobile Devices in Cellular Networks                            | Jens Trogh, David Plets, Erik<br>Surewaard, Mathias<br>Spiessens, Mathias<br>Versichele, Luc Martens and<br>Wout Joseph                                           |





| 81 | TD(18)08007 | On the worst-case influence of<br>atmospheric circumstances on<br>microwave links                                                                                                     | Emmanuel Van Lil, Roeland<br>Van Malderen                                                                                |
|----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 82 | TD(18)08008 | Neural network approach for human<br>activity recognition on smartphones and<br>smartwatches                                                                                          | Martin Milenkoski, Kire<br>Trivodaliev, Biljana Risteska<br>Stojkoska Martin Milenkoski                                  |
| 83 | TD(18)08009 | TDoA-based Outdoor Positioning with<br>Tracking Algorithm in a Public LoRa<br>Network                                                                                                 | Nico Podevijn, David Plets,<br>Jens Trogh, Luc Martens,<br>Pieter Suanet, Kim<br>Hendrikse, Wout Joseph                  |
| 84 | TD(18)08010 | H-MAC Channel Phase Estimator with<br>Hierarchical Data Decision Aided Feed-<br>Back Gradient Solver                                                                                  | Jan Sykora                                                                                                               |
| 85 | TD(18)08011 | A Channel Model for Polarised Off-<br>Body Communications with Dynamic<br>Users                                                                                                       | Kenan Turbic, Luis M.<br>Correia and Marko Beko                                                                          |
| 86 | TD(18)08012 | Performance Analysis of Mixture of<br>Unicast and Multicast Sessions in 5G<br>NR System                                                                                               | Konstantin Samouylov,<br>Yuliya Gaidamaka                                                                                |
| 87 | TD(18)08013 | 3D Map Implementation And<br>Visualization for Radio Propagation<br>Simulation                                                                                                        | Ossi Saukko, Aki Hekkala,<br>Ville Pitkäkangas, Anttoni<br>Porri, Marjo Heikkilä                                         |
| 88 | TD(18)08014 | Efficient Detection and Clustering<br>Mechanisms for Spectral-Activity<br>Information Exchange                                                                                        | Krzysztof Cichoń, Hanna<br>Bogucka                                                                                       |
| 89 | TD(18)08015 | Internet of Things and Mobile<br>Crowdsensing in Hypertensive Patients                                                                                                                | Tamara Škorić, Slađana<br>Jovanović, Milan Jovanovic,<br>Branislav Milovanović,<br>Konstantinos Katzis, Dragana<br>Bajić |
| 90 | TD(18)08016 | Clutter Loss in a Vegetated Residential<br>Environment – Part-I                                                                                                                       | Saul A. Torrico and Roger H.<br>Lang                                                                                     |
| 91 | TD(18)08019 | An Energy Efficient Service-based RAN<br>slicing Technique in Virtual Wireless<br>Networks                                                                                            | Behnam Rouzbehani, Luis M.<br>Correia, Luísa Caeiro                                                                      |
| 92 | TD(18)08020 | Conformal Automotive Antennas in the Roof for Vehicle-to-X Communications                                                                                                             | Gerald Artner, Wim<br>Kotterman, Giovanni Del<br>Galdo, Matthias A. Hein                                                 |
| 93 | TD(18)08021 | A Minimum Average-delay and<br>Maximum Spectral Efficiency<br>Configuration Algorithm for Relay-<br>assisted HARQ Transmissions Under<br>Reliability and Maximum-delay<br>Constraints | Vasile Bota, Mihaly Varga                                                                                                |
| 94 | TD(18)08022 | 1-bit Localization Scheme for Radar<br>using Dithered Quantized Compressed<br>Sensing                                                                                                 | Thomas Feuillen, Chunlei Xu,<br>Luc Vandendorpe and<br>Laurent Jacques                                                   |





| 95  | TD(18)08023 | Path Optimization for Unmanned Aerial<br>Base Stations with Limited Radio<br>Resources                                                 | Silvia Mignardi, Chiara<br>Buratti, Valentina Cacchiani,<br>Roberto Verdone                                                     |
|-----|-------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 96  | TD(18)08024 | Statistical modelling of short-range interference paths                                                                                | Richard Rudd                                                                                                                    |
| 97  | TD(18)08025 | Performance Evaluation and Packet<br>Scheduling in HeNB Deployments                                                                    | Rui R. Paulo, Fernando J.<br>Velez and Giuseppe Piro                                                                            |
| 98  | TD(18)08026 | SIMO RSS Measurement in Bluetooth<br>Low Power Indoor Positioning System                                                               | Stanislav Rozum, Jiri<br>Sebesta, Martin Slanina,<br>Ladislav Polak                                                             |
| 99  | TD(18)08027 | A Stochastic Performance Model For<br>Dense Vehicular Ad-Hoc Networks                                                                  | Thomas Blazek, Taulant<br>Berisha, Edon Gashi, Bujar<br>Krasniqi, Christoph F.<br>Mecklenbräuker                                |
| 100 | TD(18)08028 | An Analytical Raytracer for Efficient D2D Path Loss Predictions                                                                        | Nils Dreyer, Thomas Kürner                                                                                                      |
| 101 | TD(18)08029 | A Geo-Locational Spectrum Database<br>for Cyprus - Support TVWS for rural<br>Internet access in 5G                                     | Giannis Papas, Konstantinos<br>Katzis, Luzango Mfupe                                                                            |
| 102 | TD(18)08030 | Super-Resolution Channel Estimation<br>Including the Dense Multipath<br>Component – A Sparse Variational<br>Bayesian Approach          | Stefan Grebien, Erik<br>Leitinger, Bernard H. Fleury,<br>Klaus Witrisal                                                         |
| 103 | TD(18)08031 | Fully Parallel Distributed Massive<br>MIMO Channel Measurements in Urban<br>Vehicular Scenario                                         | David Löschenbrand, Markus<br>Hofer, Laura Bernadó,<br>Gerhard Humer, Bernhard<br>Schrenk, Stefan Zelenbaba<br>and Thomas Zemen |
| 104 | TD(18)08032 | An update on "Simple Scattering and<br>Diffraction Models using Point Cloud<br>Maps for Channel Model and<br>Connectivity Predictions" | Jean-Frédéric Wagen and<br>Karol Kruzelecki                                                                                     |
| 105 | TD(18)08033 | FRET-based nanocommunication in organic structures of plant origin                                                                     | Aleksandra Orzechowska,<br>Joanna Fiedor, Pawel<br>Kulakowski                                                                   |
| 106 | TD(18)08034 | Reproducing measured MANET radio<br>performances using the EMANE<br>framework                                                          | Jean-Frédéric Wagen,<br>Alexandre Nikodemski,<br>François Buntschu, Gérôme<br>Bovet                                             |
| 107 | TD(18)08035 | Recent developments in mmWave requirements and test methods for 5G                                                                     | Moray Rumney                                                                                                                    |





|     | 1           | I COMPANY AND A C |                                                                                                                                                          |
|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 108 | TD(18)08036 | Variability of the Dielectric Properties<br>Due to Tissue Heterogeneity and Its<br>Influence on the Development of EM<br>Phantoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A. Fornes-Leal, C. Garcia-<br>Pardo, S. Castelló-Palacios,<br>M. Frasson, A. Nevárez, V.<br>Pons Beltrán, and N.<br>Cardona                              |
| 109 | TD(18)08037 | Stochastic Multipath Model for the In-<br>Room Radio Channel based on Room<br>Electromagnetics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Troels Pedersen                                                                                                                                          |
| 110 | TD(18)08038 | Reduced Complexity Transfer Function<br>Computation for Complex Indoor<br>Channels Using Propagation Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ramoni Adeogun, Troels<br>Pedersen and Ayush Bharti                                                                                                      |
| 111 | TD(18)08039 | The 5G Verticals INNovation<br>Infrastructure (5G-VINNI) Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pål Grønsund, Per Hjalmar<br>Lehne                                                                                                                       |
| 112 | TD(18)08040 | Frequency Characteristics of Diffuse<br>Scattering in SHF band in Indoor<br>Environments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kentaro Saito, Panawit<br>Hanpinitsak, Wei Fan, Jun-<br>ichi Takada, Gert F.<br>Pedersen                                                                 |
| 113 | TD(18)08041 | The OpenAirInterface 5G New Radio project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Florian Kaltenberger                                                                                                                                     |
| 114 | TD(18)08042 | Angle of Arrival-based Beam Selection<br>for Hybrid Beamforming with Machine<br>and Deep Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carles Antón-Haro, Xavier<br>Mestre                                                                                                                      |
| 115 | TD(18)08043 | Preliminary Results of Porting RIOT OS to OpenMote-B Hardware Platform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Darko Simić, Gordana<br>Gardašević, Dragan<br>Vasiljević                                                                                                 |
| 116 | TD(18)08044 | Above-90GHz Spectrum as Enabler for<br>Efficient Tbit/s Wireless<br>Communications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yoann Corre, Grégory<br>Gougeon, Jean-Baptiste<br>Doré, Simon Bicais, Dimitri<br>Kténas, Jacques Palicot,<br>Carlos Faouzi Bader,<br>Emmanuel Faussurier |
| 117 | TD(18)08045 | Using Ray-based Deterministic<br>Simulations for Large-scale System<br>Level Evaluation of a Massive MIMO<br>Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mohammed Zahid Aslam,<br>Yoann Corre, Emil Bjornson,<br>Erik G. Larsson                                                                                  |
| 118 | TD(18)08046 | Flow Watermarking for Traffic Analysis and Intrusion Tracing in 5G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Boris Assanovich                                                                                                                                         |
| 119 | TD(18)08047 | Fixing Randomness of 3GPP Clustered Delay Line Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pekka Kyösti, Jukka<br>Kyröläinen, Lassi Hentilä                                                                                                         |
| 120 | TD(18)08048 | Channel Hardening in Massive MIMO:<br>Experimental Validation and Model<br>Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sara Gunnarsson, Jose<br>Flordelis, Liesbet Van der<br>Perre, Fredrik Tufvesson                                                                          |
| 121 | TD(18)08049 | Resource Allocation in Wireless Mesh<br>Networks with OFDMA Modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arie Reichman, Shahaf<br>Wayer, Miri Priesler (Moreno)                                                                                                   |





| 122 | TD(18)08050 | Copula-Based Interference Models and<br>Fundamental Limits in IoT Wireless<br>Networks                                       | Ce Zheng, Malcolm Egan,<br>Laurent Clavier, Gareth W.<br>Peters and Jean-Marie Gorce                            |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 123 | TD(18)08052 | Optimization of the mobile offloading scheme in fog computing infrastructure                                                 | Luis M Correia, Eduard<br>Sopin, Konstantin Samouylov                                                           |
| 124 | TD(19)09001 | A Comparison of Knapsack<br>Optimisation and CRE/ABS for MLB in<br>Dense Self Organising Small Cells                         | Karim M. Nasr and Klaus<br>Moessner                                                                             |
| 125 | TD(19)09002 | Experimental Characterization of V2I<br>Radio Channel in a Suburban<br>Environment                                           | M. Yusuf, E. Tanghe, F.<br>Challita, P. Laly, D. P. Gaillot,<br>M. Lienard, L. Martens, and<br>W. Joseph        |
| 126 | TD(19)09003 | Cooperative Passive Coherent Location<br>-A Promising 5G Service to Support<br>Road Safety                                   | Reiner S. Thomä                                                                                                 |
| 127 | TD(19)09004 | Clutter loss measurements and simulations at 26 GHz and 40 GHz                                                               | B. Montenegro-Villacieros, J.<br>Bishop, J-M. Charea                                                            |
| 128 | TD(19)09005 | Learning Approaches to Beam<br>Selection for Hybrid Analog<br>Beamforming                                                    | Carles Antón-Haro, Xavier<br>Mestre                                                                             |
| 129 | TD(19)09006 | Performance Modeling and Analysis for<br>Vehicle-to-Anything Connectivity in<br>Representative High-Interference<br>Channels | Thomas Blazek, Golsa<br>Ghiaasi, Christian<br>Backfrieder, Gerald<br>Ostermayer, Christoph F.<br>Mecklenbräuker |
| 130 | TD(19)09007 | In-motion calibration of Wi-Fi-based<br>indoor tracking systems for<br>smartphones                                           | Miguel Martínez del Horno,<br>Luis Orozco Barbosa and<br>Ismael García-Varea                                    |
| 131 | TD(19)09008 | Accounting for Energy Cost When<br>Designing Energy-Efficient Wireless<br>Access Networks                                    | Greta Vallero, Margot<br>Deruyck, Michela Meo, Wout<br>Joseph                                                   |
| 132 | TD(19)09009 | Electronically Steerable Parasitic Array<br>Radiator Flush-Mounted for Automotive<br>LTE                                     | Gerald Artner, Jerzy<br>Kowalewski, Jude Atuegwu,<br>Christoph F. Mecklenbräuker,<br>Thomas Zwick               |
| 133 | TD(19)09010 | Aerial Coverage Analysis of Cellular<br>Systems at LTE and mmWave<br>Frequencies Using 3D City Models                        | Achiel Colpaert, Evgenii<br>Vinogradov, Sofie Pollin                                                            |
| 134 | TD(19)09011 | 300 GHz Channel Measurements in a<br>Real Data Centre                                                                        | Johannes M. Eckhardt,<br>Tobias Doeker, Sebastian<br>Rey, Thomas Kürner                                         |
| 135 | TD(19)09012 | Joint Received Signal Strength, Angle-<br>of-Arrival, and Time-of-Flight<br>Positioning                                      | David Plets, Wouter Deprez,<br>Jens Trogh, Luc Martens,<br>Wout Joseph                                          |





| 136 | TD(19)09013 | Wideband Off-Body Channel<br>Characteristics with Dynamic User                                                                            | Kenan Turbic, Slawomir J.<br>Ambroziak, Luis M. Correia,<br>Marko Beko                                                                                                                 |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 137 | TD(19)09014 | Polarization Planning for Wireless<br>Networks                                                                                            | Philippe Ezran, Yoram<br>Haddad, Merouane Debbah                                                                                                                                       |
| 138 | TD(19)09015 | Impact of Spatial Consistency on<br>Dynamic Beamforming for Millimeter-<br>Wave Cellular Systems                                          | Harsh Tataria and Fredrik<br>Tufvesson                                                                                                                                                 |
| 139 | TD(19)09016 | Characterization of slow and fast fading<br>in off-body communication at 2.45 GHz<br>with space diversity scheme in indoor<br>environment | Szymon Wiszniewski,<br>Slawomir J. Ambroziak                                                                                                                                           |
| 140 | TD(19)09017 | A Novel Bitrate Adaptation Method for<br>Heterogeneous Wireless Body Area<br>Networks                                                     | Krzysztof K. Cwalina,<br>Sławomir J. Ambroziak, Piotr<br>Rajchowski, Jarosław<br>Sadowski, Jacek Stefański                                                                             |
| 141 | TD(19)09018 | Person tracking in a Ferry Environment<br>Using Ultra Wideband Radio Interface                                                            | Piotr Rajchowski, Krzysztof<br>Cwalina, Jaroslaw Sadowski                                                                                                                              |
| 142 | TD(19)09019 | Detection of Row-Sparse Matrices with Row-Structure Constraints                                                                           | David Gregoratti, Carlos<br>Buelga, and Xavier Mestre                                                                                                                                  |
| 143 | TD(19)09020 | Experimental Characterization of the in-<br>to-out-Body Path Loss at 433 MHz for<br>Dairy Cows                                            | Said Benaissa, David Plets,<br>Denys Nikolayev, Leen<br>Verloock, Günter Vermeeren,<br>Margot Deruyck, Luc<br>Martens, Frank André<br>Maurice Tuyttens, Bart<br>Sonck, and Wout Joseph |
| 144 | TD(19)09021 | 5G Multi-band Double-directional Street<br>Canyon Measurements in Germany                                                                 | Diego Dupleich, Robert<br>Müller, Sergii Skoblikov, Jian<br>Luo, Giovanni Del Galdo, and<br>Reiner S. Thomä                                                                            |
| 145 | TD(19)09022 | Dynamic Polarimetric Wideband<br>Channel Sounding in an Elevator Shaft                                                                    | Pasi Koivumaki, Mikko Heino,<br>Katsuyuki Haneda, Mikko<br>Puranen and Johanna Pesola                                                                                                  |
| 146 | TD(19)09023 | A QoE-driven traffic steering algorithm for LTE networks                                                                                  | María Luisa Marí-Altozano,<br>Salvador Luna-Ramírez,<br>Matías Toril                                                                                                                   |
| 147 | TD(19)09024 | Massive MIMO for Industrial Scenarios<br>: Measurement-Based Poalrimetric<br>Analysis.                                                    | Frédéric Challita, Pierre Laly,<br>Martine Liénard, Emmeric<br>Tangue, Wout Joseph, Davy<br>P. Gaillot                                                                                 |
| 148 | TD(19)09025 | Hybrid Ray-Tracing/FDTD method for<br>propagation modelling of a massive<br>MIMO technology in an industrial indoor<br>environment        | Sergei Shikhantsov, Arno<br>Thielens, Gunter Vermeeren,<br>Emmeric Tanghe, Piet<br>Demeester, Luc Martens,<br>Guy Torfs, Wout Joseph                                                   |





| 149 | TD(19)09026 | A data-driven user steering algorithm<br>for optimizing user experience in multi-<br>tier LTE networks                                                     | C. Gijón, M. Toril, S. Luna-<br>Ramírez, M. L. Marí-Altozano                                                       |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 150 | TD(19)09027 | Formulation of Possible Extensions to<br>the ITU-R P833-8 Recommendation on<br>Attenuation in Vegetation at<br>Frequencies Above 1 GHz                     | Nuno Leonor; Rafael<br>Caldeirinha; Telmo<br>Fernandes                                                             |
| 151 | TD(19)09028 | Mobility Model-Based Non-Stationary<br>Mobile-to-Mobile Channel Modeling                                                                                   | Ruisi He , Bo Ai, Gordon L.<br>Stüber, Zhangdui Zhong                                                              |
| 152 | TD(19)09029 | A Kernel-Power-Density-Based<br>Algorithm for Channel Multipath<br>Components Clustering                                                                   | Ruisi He, Qingyong Li, Bo Ai,<br>Yang Li-Ao Geng, Andreas F.<br>Molisch, Vinod Kristem,<br>Zhangdui Zhong, Jian Yu |
| 153 | TD(19)09030 | Millimeter-Wave Scattering Process<br>Identification and Cluster<br>Characterization                                                                       | Minseok Kim, Satoru<br>Kishimoto, Tatsuki Iwata,<br>Shigenobu Sasaki, Jun-ichi<br>Takada                           |
| 154 | TD(19)09031 | EMPOWER – Empowering<br>Transatlantic PlatfOrms for advanced<br>WirEless Research                                                                          | Per Hjalmar Lehne                                                                                                  |
| 155 | TD(19)09032 | Combining Measurements and<br>Simulations for Evaluation of Tracking<br>Algorithms                                                                         | Klemen Bregar, Roman<br>Novak, Tomaž Javornik,<br>Mihael Mohorčič                                                  |
| 156 | TD(19)09033 | Frequency Trends of Radio Wave<br>Propagation in the range 1-100 GHz                                                                                       | Jonas Medbo                                                                                                        |
| 157 | TD(19)09034 | On the Coexistence of LTE and LoRa in the 2.4 GHz ISM Band                                                                                                 | Ladislav Polak, Martin<br>Potocnak, Jiri Milos, Tomas<br>Kratochvil                                                |
| 158 | TD(19)09035 | Concept and structure of the<br>localization module in project<br>"Innovative method of localization<br>airplanes in VCS (VCS-MLAT)<br>distributed system" | Szymon Wiszniewski                                                                                                 |
| 159 | TD(19)09036 | Fading Analysis in Off-Body Channels<br>in a Straight Metallic Corridor in a<br>Passenger Ferry Environment                                                | Pawel T. Kosz, Slawomir J.<br>Ambroziak, Luis M. Correia,<br>Jacek Stefanski                                       |
| 160 | TD(19)09038 | Impact of beamforming on human<br>shadowing in rich scattering<br>environment: a numerical analysis                                                        | Thomas Pairon, Claude<br>Oestges, Christophe Craeye                                                                |
| 161 | TD(19)09039 | EMF evaluations for future networks based on Massive MIMO                                                                                                  | Claudia Carciofi, Samuela<br>Persia, Stefano D'Elia,<br>Riccardo Suman                                             |





| 162 | TD(19)09040 | Electromagnetic field levels massive<br>monitoring in 5G scenarios: dynamic<br>and standard measurements<br>comparison   | Claudia Carciofi, Andrea<br>Garzia, Simona Valbonesi,<br>Alessandro Gandolfo,<br>Roberto Franchelli                                                                            |
|-----|-------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 163 | TD(19)09041 | Radio Frequency Electromagnetic Field<br>Exposure Assessment for future 5G<br>networks                                   | Claudia Carciofi, Samuela<br>Persia, Marina Barbiroli,<br>Daniele Bontempelli,<br>Giuseppe Anania                                                                              |
| 164 | TD(19)09042 | An Agile Full-Duplex 5G Testbed for<br>OTA Testing at 28 GHz: from GbE-<br>based to OTA Live Streaming of 8 HD<br>Videos | Rodolfo Gomes, Carlos<br>Ribeiro, Luis Duarte, Telmo<br>Fernandes, Akram<br>Hammoudeh, Manuel Garcia<br>Sanchez and Rafael<br>Caldeirinha                                      |
| 165 | TD(19)09043 | Agile Radio Channel Sounder for 5G<br>Propagation Modelling at mmWave<br>Frequencies                                     | Rafael Caldeirinha, Nuno<br>Leonor, João Reis, André<br>Sardo, Luis Duarte, Glaucio<br>Ramos and Carlos Ribeiro                                                                |
| 166 | TD(19)09044 | SDR-based Gateway for IoT and M2M<br>Applications                                                                        | Cristinel Gavrilă, Csaba<br>Kertesz, Marian Alexandru,<br>Vlad Popescu and Titus<br>Bălan                                                                                      |
| 167 | TD(19)09045 | Reconfigurable IoT Gateway Based on a SDR Platform                                                                       | Cristinel Gavrilă, Csaba<br>Kertesz, Marian Alexandru,<br>Vlad Popescu and Titus<br>Bălan                                                                                      |
| 168 | TD(19)09046 | Joint High-Resolution Delay-Doppler<br>Estimation for Bi-static Radar<br>Measurements                                    | Michael Döbereiner, Martin<br>Käske, Andreas Schwind,<br>Carsten Andrich, Philip<br>Wendland, Guenter<br>Schaefer, Matthias A. Hein,<br>Reiner S. Thomä, Giovanni<br>Del Galdo |
| 169 | TD(19)09047 | The importance of far field effect in<br>diffraction at mmWave                                                           | T. W. C. Brown, M. Khalily                                                                                                                                                     |
| 170 | TD(19)09048 | Kinetic approach for estimation of SIR<br>time-dependent measures in D2D<br>connectivity                                 | Anastasia Ivchenko, Yuri<br>Orlov, Andrey Samouylov,<br>Dmitri Molchanov, Yuliya<br>Gaidamaka, Konstantin<br>Samouylov, Luis M. Correia                                        |
| 171 | TD(19)09049 | High-Performance Ray-Tracing<br>Simulation Platform for 5G and Beyond                                                    | Danping He, Ke Guan, Bo Ai,<br>Zhangdui Zhong, Longhe<br>Wang,Thomas Kürner                                                                                                    |
| 172 | TD(19)09050 | Towards Realistic High-Speed Train<br>Channels at 5G Millimeter-Wave Band:<br>Case Study for Paradigm<br>Implementation  | Ke Guan, Bo Ai, Bile Peng,<br>Danping He, Guangkai Li,<br>Jingya Yang, Zhangdui<br>Zhong, Thomas Kürner                                                                        |
| 173 | TD(19)09051 | Radar Cross Section measurements of the diverse drone models                                                             | Vasilii Semkin, Jaakko<br>Haarla, and Ville Viikari                                                                                                                            |





| 174 | TD(19)09052 | Low-Rank Channel Estimation for<br>Multiple Antenna Systems using Joint<br>Spatial-Temporal Covariance Matrix    | Kun Chen-Hu, Dirk T.M.<br>Slock and Ana Garcia<br>Armada                                                                                                                                                                                                      |
|-----|-------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 175 | TD(19)09053 | Evaluating Vehicular Antennas for<br>Cellular Radio Communications                                               | Nils Dreyer, Gerald Artner,<br>Frank Backwinkel, Frank<br>Wollenschläger, Thomas<br>Kürner                                                                                                                                                                    |
| 176 | TD(19)09054 | Sparsity in the Delay-Doppler Domain<br>for Measured 60 GHz Vehicle-to-<br>Infrastructure Communication Channels | Herbert Groll, Erich<br>Zöchmann, Stefan<br>Pratschner, Sebastian<br>Caban, Martin Lerch, Daniel<br>Schützenhöfer, Markus<br>Hofer, Jiri Blumenstein, Seun<br>Sangodoyin, Thomas Zemen,<br>Ales Prokes, Andreas F.<br>Molisch, Christoph F.<br>Mecklenbräuker |
| 177 | TD(19)09055 | Some more results on MANET radio<br>performances using the EMANE<br>framework                                    | Jean-Frédéric Wagen,<br>Alexandre Nikodemski,<br>François Buntschu and<br>Gérôme Bovet                                                                                                                                                                        |
| 178 | TD(19)09057 | Modulation Based Energy Harvesting Scheme                                                                        | Akashkumar Rajaram,<br>Dushantha Nalin K. Jayakody<br>and Rui Dinis                                                                                                                                                                                           |
| 179 | TD(19)09058 | Fading channel emulation for massive<br>MIMO testing using a conductive phase<br>matrix setup                    | Pekka Kyösti, Petteri Heino                                                                                                                                                                                                                                   |
| 180 | TD(19)09059 | Investigation on Stationarity of V2V<br>Channels in a Highway Scenario                                           | Daniel Czaniera, Martin<br>Käske, Gerd Sommerkorn,<br>Christian Schneider, Reiner<br>S. Thomä, Giovanni Del<br>Galdo, Mate Boban, Jian Luo                                                                                                                    |
| 181 | TD(19)09060 | Numerical methods for random rough surface scattering computation                                                | Conor Brennan, Dublin City<br>University, Ireland Dung<br>Trinh-Xuan, Ho Chi Minh City<br>University of Technology<br>,Vietnam. Vinh Pham-Xuan<br>Ho Chi Minh City University<br>of Technology ,Vietnam and<br>Technische Universitat<br>Darmstadt, Germany   |
| 182 | TD(19)09061 | OFDM Waveform for Distributed Radar<br>Sensing in Automotive Scenarios                                           | Steffen Schieler, Christian<br>Schneider, Andreas Schwind,<br>Philip Wendland, Carsten<br>Andrich, Michael Döbereiner,<br>Jian Luo, Reiner S. Thomä,<br>Giovanni Del Galdo                                                                                    |
| 183 | TD(19)09062 | Accuracy Bounds for Array-Based<br>Positioning in Dense Multipath<br>Channels                                    | Thomas Wilding, Stefan<br>Grebien, Ulrich Mühlmann,<br>Klaus Witrisal                                                                                                                                                                                         |





| 184                             | TD(19)09063                                                             | Single-Anchor, Multipath-Assisted<br>Indoor Positioning with Aliased Antenna<br>Arrays                                                                                                                                                                                                                                                                                                                   | Thomas Wilding, Stefan<br>Grebien, Erik Leitinger, Ulrich<br>Mühlmann, Klaus Witrisal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 185                             | TD(19)09065                                                             | Measurements and Modeling for indoor to outdoor channels in TVWS Bands                                                                                                                                                                                                                                                                                                                                   | Tunçer Baykaş, Mohamed<br>Hashir Syed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 186                             | TD(19)09066                                                             | Statistical Evaluation of Delay and<br>Doppler Spread in 60 GHz Vehicle-to-<br>Vehicle Channels During Overtaking                                                                                                                                                                                                                                                                                        | Erich Zöchmann, Markus<br>Hofer, Martin Lerch, Jiri<br>Blumenstein, Seun<br>Sangodoyin, Herbert Groll,<br>Stefan Pratschner, Sebastian<br>Caban, David Löschenbrand,<br>Laura Bernadó, Thomas<br>Zemen, Ales Prokes, Markus<br>Rupp, Christoph<br>Mecklenbräuker, Andreas<br>Molisch                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 187                             | TD(19)09067                                                             | Gaussian Process Modeling of UWB<br>Multipath Components                                                                                                                                                                                                                                                                                                                                                 | Anh Nguyen Hong, Michael<br>Rath, Josef Kulmer, Stefan<br>Grebien, Erik Leitinger,<br>Khang Nguyen Van, and<br>Klaus Witrisal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 188                             | TD(19)09068                                                             | From Iterative Threshold Decoding to a Low-Power High-Speed Analog VLSI Decoder Implementation                                                                                                                                                                                                                                                                                                           | Werner G. Teich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          | E Zöchmann C E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 189                             | TD(19)09069                                                             | Measured Delay and Doppler Profiles<br>of Overtaking Vehicles at 60 GHz                                                                                                                                                                                                                                                                                                                                  | Mecklenbräuker, M. Lerch, S.<br>Pratschner, M. Hofer, D.<br>Löschenbrand, J.<br>Blumenstein, S. Sangodoyin,<br>G. Artner, S. Caban, T.<br>Zemen, A. Prokeš, M. Rupp<br>and A.F. Molisch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 189                             | TD(19)09069<br>TD(19)09070                                              | Measured Delay and Doppler Profiles<br>of Overtaking Vehicles at 60 GHz<br>TRUDI: Testing Environment for<br>Vehicular Applications Running with<br>Devices in the Loop                                                                                                                                                                                                                                  | Mecklenbräuker, M. Lerch, S.<br>Pratschner, M. Hofer, D.<br>Löschenbrand, J.<br>Blumenstein, S. Sangodoyin,<br>G. Artner, S. Caban, T.<br>Zemen, A. Prokeš, M. Rupp<br>and A.F. Molisch<br>Michele Menarini, Pasquale<br>Marrancone, Giammarco<br>Cecchini, Alessandro Bazzi,<br>Barbara M. Masini, Alberto<br>Zanella                                                                                                                                                                                                                                                                                                                                                                                                               |
| 189<br>190<br>191               | TD(19)09069<br>TD(19)09070<br>TD(19)09071                               | Measured Delay and Doppler Profiles<br>of Overtaking Vehicles at 60 GHz<br>TRUDI: Testing Environment for<br>Vehicular Applications Running with<br>Devices in the Loop<br>UWB Path Loss Models for Ingestible<br>Devices                                                                                                                                                                                | Mecklenbräuker, M. Lerch, S.<br>Pratschner, M. Hofer, D.<br>Löschenbrand, J.<br>Blumenstein, S. Sangodoyin,<br>G. Artner, S. Caban, T.<br>Zemen, A. Prokeš, M. Rupp<br>and A.F. Molisch<br>Michele Menarini, Pasquale<br>Marrancone, Giammarco<br>Cecchini, Alessandro Bazzi,<br>Barbara M. Masini, Alberto<br>Zanella<br>Sofia Perez-Simbor, Carlos<br>Andreu, Concepcion Garcia-<br>Pardo, Matteo Frasson,<br>Narcis Cardona                                                                                                                                                                                                                                                                                                       |
| 189<br>190<br>191<br>192        | TD(19)09069<br>TD(19)09070<br>TD(19)09071<br>TD(19)09072                | Measured Delay and Doppler Profiles<br>of Overtaking Vehicles at 60 GHz<br>TRUDI: Testing Environment for<br>Vehicular Applications Running with<br>Devices in the Loop<br>UWB Path Loss Models for Ingestible<br>Devices<br>Characterisation of Channel Hardening<br>Using the Diversity Order of the<br>Effective Channel                                                                              | Mecklenbräuker, M. Lerch, S.<br>Pratschner, M. Hofer, D.<br>Löschenbrand, J.<br>Blumenstein, S. Sangodoyin,<br>G. Artner, S. Caban, T.<br>Zemen, A. Prokeš, M. Rupp<br>and A.F. Molisch<br>Michele Menarini, Pasquale<br>Marrancone, Giammarco<br>Cecchini, Alessandro Bazzi,<br>Barbara M. Masini, Alberto<br>Zanella<br>Sofia Perez-Simbor, Carlos<br>Andreu, Concepcion Garcia-<br>Pardo, Matteo Frasson,<br>Narcis Cardona<br>Jens Abraham , Golsa<br>Ghiaasi, Torbjorn Ekman                                                                                                                                                                                                                                                    |
| 189<br>190<br>191<br>192<br>193 | TD(19)09069<br>TD(19)09070<br>TD(19)09071<br>TD(19)09072<br>TD(19)09073 | Measured Delay and Doppler Profiles<br>of Overtaking Vehicles at 60 GHz<br>TRUDI: Testing Environment for<br>Vehicular Applications Running with<br>Devices in the Loop<br>UWB Path Loss Models for Ingestible<br>Devices<br>Characterisation of Channel Hardening<br>Using the Diversity Order of the<br>Effective Channel<br>RF Domain Symbol Level Precoding for<br>Large-Scale Antenna Array Systems | <ul> <li>L. Zoorimann, C.T.</li> <li>Mecklenbräuker, M. Lerch, S.</li> <li>Pratschner, M. Hofer, D.</li> <li>Löschenbrand, J.</li> <li>Blumenstein, S. Sangodoyin,</li> <li>G. Artner, S. Caban, T.</li> <li>Zemen, A. Prokeš, M. Rupp<br/>and A.F. Molisch</li> <li>Michele Menarini, Pasquale</li> <li>Marrancone, Giammarco</li> <li>Cecchini, Alessandro Bazzi,</li> <li>Barbara M. Masini, Alberto</li> <li>Zanella</li> <li>Sofia Perez-Simbor, Carlos</li> <li>Andreu, Concepcion Garcia-<br/>Pardo, Matteo Frasson,</li> <li>Narcis Cardona</li> <li>Jens Abraham , Golsa</li> <li>Ghiaasi, Torbjorn Ekman</li> <li>Stavros Domouchtsidis,</li> <li>Christos Tsinos, Symeon</li> <li>Chatzinotas, Bjorn Ottersten</li> </ul> |





| 195 | TD(19)09075 | From Nanocommunications to Body<br>Area Networks: a Perspective on Truly<br>Personal Communications                                 | Pawel Kulakowski, Kenan<br>Turbić and Luis M. Correia                                                             |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 196 | TD(19)09076 | Moving interference source prediction for millimetre wave mesh network                                                              | János Bitó                                                                                                        |
| 197 | TD(19)09077 | A Real-Time Propagation Channel<br>Sounder for 5G Applications                                                                      | Jean-Marc Conrat                                                                                                  |
| 198 | TD(19)09079 | On scattering and specular reflection<br>formulations for modelling using point<br>cloud maps                                       | Jean-Frederic Wagen                                                                                               |
| 199 | TD(19)09080 | Implementation of Array Antenna<br>Systems with MIMO                                                                                | Rooderson Martines de<br>Andrade, Fernando J. Velez,<br>Kun Chen and Ana Garcia<br>Armada                         |
| 200 | TD(19)09081 | Mapping between the Average SINR<br>and the Supported Throughput in Small<br>Cell HetNets                                           | Bruno C. Silva and Fernando<br>J. Velez                                                                           |
| 201 | TD(19)09082 | Update on the Evaluation of Source<br>Routing Minimum Cost Forwarding<br>Protocol over 6TiSCH Applied to the<br>OpenMote-B Platform | Anderson Rocha Ramos,<br>Fernando José Velez and<br>Gordana Gardašević                                            |
| 202 | TD(19)09083 | Using COST IC1004 Vienna Scenario<br>to test C-RAN optimisation algorithms                                                          | Rolando Guerra, Silvia Ruiz,<br>Mario Garcia-Lozano, Joan<br>Olmos                                                |
| 203 | TD(19)09084 | Massive MIMO Extensions to the COST<br>2100 Channel Model: Modeling and<br>Validation                                               | Jose Flordelis, Xuhong Li,<br>Ove Edfors, and Fredrik<br>Tufvesson                                                |
| 204 | TD(19)09085 | Spatial Data Focusing using time resources                                                                                          | S. Golstein, G. Molineaux, M.<br>Odhiambo, F. Horlin, P. De<br>Doncker, J. Sarrazin                               |
| 205 | TD(19)09086 | "Fog Massive MIMO" for ultra-dense,<br>low latency radio access networks                                                            | Alister Burr, Dick Maryopi<br>and Manijeh Bashar                                                                  |
| 206 | TD(19)09087 | A Geometry-based Stochastic Channel<br>Model for V2V Intersection Scenarios<br>based on High-resolution<br>Measurements             | Carl Gustafson, Kim Mahler,<br>David Bolin, Fredrik<br>Tufvesson                                                  |
| 207 | TD(19)09089 | Applicability Limits of Simplified Human<br>Blockage Models at 5G mm-Wave<br>Frequencies                                            | J. Samuel Romero-Peña,<br>Narcís Cardona (iTEAM<br>Research Institute,<br>Universitat Politècnica de<br>València) |
| 208 | TD(19)09090 | Channel model developments at 3GPP and implications on device testing                                                               | Moray Rumney                                                                                                      |





| 209 | TD(19)09091 | LoRa Physical Layer Evaluation for<br>Point-to-Point Links and Coverage<br>Measurements in Diverse<br>Environments | Gilles Callebaut, Guus<br>Leenders, Stijn Crul,<br>Chesney Buyle, Liesbet Van<br>der Perre                                            |
|-----|-------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 210 | TD(19)09092 | Building Entry Loss for Traditional and<br>Thermally Efficient Houses Between<br>0.4 and 73 GHz                    | Jack Lewis Towers, Sana<br>Salous, Xavier Raimundo,<br>and Adnan Cheema                                                               |
| 211 | TD(19)09093 | 1-100 GHz Deterministic and<br>Experimental Indoor Channel Modeling                                                | Maria-Teresa Martinez-<br>Ingles, Frédéric Challita,<br>Davy P. Gaillot, Juan Pascual<br>García and Jose-Maria<br>Molina-Garcia-Pardo |