5G Testbeds: Bristol & Lund MaMIMO Examples

Mark Beach, Fredrik Tufvesson, Ove Edfors, et al

Communications Systems & Networks Group
Smart Internet Lab
University of Bristol, UK

m.a.beach@bristol.ac.uk, fredrik.tufvesson@eit.lth.se, ove.edfors@eit.lth.se

COST IRACON Final Workshop, Louvain-la-Neuve, Belgium
Tuesday 28th January 2020

bristol.ac.uk/smart bristol.ac.uk/engineering/research/csn/
Summary

• 5G Use Cases & Terminology
• New Radio (NR) KPIs
• NR Physical Layer:
 • Key attributes & Spectrum
• Sub-6GHz NR
 • Massive MIMO
 • Test-beds & Spectrum Efficiency
 • Mobility & Operational Imperfections
• Take Aways
5G Scenarios and Use Cases

Enhanced Mobile Broadband (eMBB)

• Data driven applications
• 2 billion people on social media

Goals:
• 10-20 Gbps peak
• 100 Mbps whenever needed
• 10000x more traffic
• Macro and small cells
• Support for high mobility (500 km/h)
• Network energy saving by 100 times
5G Scenarios and Use Cases

Enhanced Mobile Broadband (eMBB)
- Data driven applications
- 2 billion people on social media

Massive Machine Communication (mMTC)
- 30 billion “things” connected
- Low cost, low energy

Goals:
- High density (105 to 106 per km²)
- Long range
- Low data rate (1 - 100 kbps)
- M2M ultra low cost
- 10 years battery
- Asynchronous access
5G Scenarios and Use Cases

<table>
<thead>
<tr>
<th>Enhanced Mobile Broadband (eMBB)</th>
<th>Massive Machine Communication (mMTC)</th>
<th>Ultra Reliability and Low Latency (URLLC)</th>
</tr>
</thead>
</table>
| ![Enhanced Mobile Broadband](image) | • Date Driven Applications
• 2 billion people on social media | • Ultra responsive
• <1 ms air interface latency
• 5 ms E2E latency
• Ultra reliable (99.9999%)
• Low to medium data rates (50 kbps - 10 Mbps)
• High speed mobility |
| ![Massive Machine Communication](image) | • 30 billion “things” connected
• Low cost, low energy | ![Ultra Reliability and Low Latency](image) |

eMBB
- Date Driven Applications
- 2 billion people on social media

mMTC
- 30 billion “things” connected
- Low cost, low energy

URLLC
- Ultra responsive
- <1 ms air interface latency
- 5 ms E2E latency
- Ultra reliable (99.9999%)
- Low to medium data rates (50 kbps - 10 Mbps)
- High speed mobility
5G – Networked Society

- **NR Specifications:**
 - 10Gbit/s Peak
 - 100Mbit/s, where ever needed
 - X100 – x1000 Capacity
 - X10 battery life
 - Reduced Latency (0.5ms)

- **5G Physical Layer Requires:**
 - Enhanced Spectrum Efficiency for sub-6GHz
 - Use of New Spectrum: Millimetre wave bands
Conventional Cellular Radio

- Multiple users share same time, frequency or code resources
Exploiting the Spatial Domain

- Accurate spatial multiplexing for multiple access
 - Same Radio Channel, Same time (slot)
 - Space Division Multiple Access (SDMA)
- Increased spectral efficiency and network capacity
Large Antenna Arrays: Massive MIMO

Basestation or Access Point

- > 50 (M) antennas serving a few (K) users (simultaneously)
- Simple Signal Processing, power and spectrum efficient
- Essential for sub-6GHz wireless connectivity
More than simple beamforming: Marzetta Massive MIMO

https://www.youtube.com/watch?v=hAXtMNzGs5U
LuMaMi – Lund University Massive MIMO testbed

- 100 coherent RF chains
- Flexible architecture based on NI platform and software radios
- Supports 10 (later extended to 12) simultaneous single antenna users in the same time-frequency resource block
- Real time operation in the 3.7 GHz band, 20 MHz bandwidth
- Taking Massive MIMO from the lab to reality for the first time.
Massive MIMO Frame Structure: TDD
First Real Time Results – Oct 2014 Uplink

Received signal constellations – LOS & four users 2 m separation

ZF detector

MRC detector

Received signal constellations – NLOS & four users within 15 cm radius

ZF detector

MRC detector
National Instruments Massive MIMO test-bed

- 128 Programmable Radio Heads
- 20MHz Bandwidth
- ‘LTE’ like interface
- 1.2 – 6.0GHz Carrier
 - 3.51GHz used
- 4 Racks of 32 Radios
 - Data consolidation
- Channel processing
 - 24 Clients
- Massive MIMO signal processing supporting
 - 12 clients
Bristol’s First System Deployment (March 2016)

- Client Separation 2.5 - 6 Wavelengths
- Equal Transmit Power
Spectrum Efficiency Results (10th March 2016):

- Eigen Structure
- Individual Spatial Stream Rx Magnitude
- Frequency Domain profiles
- Power Delay profiles

12 streams of 256 QAM!

http://www.bristol.ac.uk/news/2016/march/massive-mimo.html
Facebook & Massive MIMO (13th April 2016)

- ARIES (Antenna Radio Integration for Efficiency in Spectrum)
- Rural wireless Internet
- Specifications & Efficiency
 - 96 antenna element array
 - 24 users
 - 71 bits/s/Hz

2nd Deployment (Wed 11th May 2016)

22 users running 256 QAM in 20MHz Channel
Using same frame structure as before:
• 145.6 bits/s/Hz
• Sum rate of 2.916 Gbps

http://spectrum.ieee.org/tech-talk/com/wireless/5g-researchers-achieve-new-spectrum-efficiency-record
http://www.bris.ac.uk/2016/may/5g-wireless-spectrum-efficiency.html

128 element (32 x 4) dual polar patch array
Mobility Trials & Spatial Correlation

https://www.youtube.com/watch?v=Qp877-PAQSG
Mobility and Massive MIMO

Car 2 speed: 29 km/h Pilot Symbol Capture Interval: 5ms

www.youtube.com/watch?v=wPPMrr4rHmo
Massive MIMO: Spectrum Efficiency Gains

- Aggressive Spatial Multiplexing gains are by means of ‘Pairwise Orthogonality’
Channel Hardening Effects & Pairwise Orthogonality

Accurate CSI

[Diagram of a network setup with multiple devices and a section showing a 3D graph]
Channel Hardening Effects & Pairwise Orthogonality

Accurate CSI +
Channel Hardening Effects & Pairwise Orthogonality

Inaccurate CSI +

OR

Accurate CSI +
Channel Hardening Effects & Pairwise Orthogonality

- Inaccurate CSI
- Accurate CSI

OR
Channel Hardening Effects & Pairwise Orthogonality

Inter-user Interference

Inaccurate CSI +

OR

Accurate CSI +
Massive MIMO: Spectrum Efficiency Gains

- Aggressive Spatial Multiplexing gains are by means of ‘Pairwise Orthogonality’
- Errors in Channel State Information (CSI), Reciprocity Calibration and hardware imperfections degrade the spatial orthogonality of massive MIMO systems as well as ‘Spatial Location of Users’.
- Grouping and scheduling users to:
 - Minimise impact of spatial stream interference
 - Dynamically optimise Quality of Service for multiple users
 - Plus, needs to be robust to errors.
EVM Prediction Method for a Single Cell Ma-MIMO

- Predicting the EVM value for different number of users without the need of retransmitting data each time the number of users is changed.

\[SINR \approx \frac{1}{EVM_{RMS}^2} \]

[1], [2]

- This method allows the EVM to be used for the Ma-MIMO algorithms to cover the impact of inaccurate CSI and Spatial Correlation.

- This EVM prediction method can be used for user grouping and power control algorithms.

DCMS 5G Testbeds & Trials Programme 5G
Layered Realities Weekend (17th & 18th April 2018)

http://www.bristol.ac.uk/news/2018/march/5gexperience.html
https://www.youtube.com/watch?v=7Qzv_TtyKMU

bristol.ac.uk
Real-time Results for User Grouping

- **Link quality**
 - Reliable live HD video streams
 - EVM < 13 (video is uncoded)

<table>
<thead>
<tr>
<th></th>
<th>Max EVM</th>
<th>Number of Groups</th>
<th>MCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UL</td>
<td>DL</td>
<td>UL</td>
</tr>
<tr>
<td>Maximizing SE</td>
<td>6</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>64-QAM</td>
</tr>
<tr>
<td>Link quality</td>
<td>12</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QPSK</td>
</tr>
<tr>
<td>Maximizing number of simultaneous users</td>
<td>16</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QPSK</td>
</tr>
<tr>
<td>Deactivate user grouping</td>
<td>16</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QPSK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Uncoded UL throughput (Mbps)</th>
<th>Uncoded DL throughput (Mbps)</th>
<th>Spectral efficiency (bits/s/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximizing SE</td>
<td>182</td>
<td>64</td>
<td>12.3</td>
</tr>
<tr>
<td>Link quality</td>
<td>135.3</td>
<td>53.2</td>
<td>9.4</td>
</tr>
<tr>
<td>Maximizing number of simultaneous UEs</td>
<td>84</td>
<td>58.6</td>
<td>7.1</td>
</tr>
<tr>
<td>Deactivate user grouping</td>
<td>84</td>
<td>0</td>
<td>4.2</td>
</tr>
</tbody>
</table>
Real-time Results for User Grouping

- **Link quality**
- **Maximizing SE**

<table>
<thead>
<tr>
<th></th>
<th>Max EVM</th>
<th>Number of Groups</th>
<th>MCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UL</td>
<td>DL</td>
<td>UL</td>
</tr>
<tr>
<td>Maximizing SE</td>
<td>6</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Link quality</td>
<td>12</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Maximizing number of</td>
<td>16</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>simultaneous users</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deactivate user</td>
<td>16</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>grouping</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Uncoded UL throughput (Mbps)</th>
<th>Uncoded DL throughput (Mbps)</th>
<th>Spectral efficiency (bits/s/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximizing SE</td>
<td>182</td>
<td>64</td>
<td>12.3</td>
</tr>
<tr>
<td>Link quality</td>
<td>135.3</td>
<td>53.2</td>
<td>9.4</td>
</tr>
<tr>
<td>Maximizing number of</td>
<td>84</td>
<td>58.6</td>
<td>7.1</td>
</tr>
<tr>
<td>simultaneous UEs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Deactivate user | 84 | 0 | 4.2 | grouping
Real-time Results for User Grouping

- Link quality
- Maximizing SE
- Maximizing number of simultaneous UEs
Real-time Results for User Grouping

- Link quality
- Maximizing SE
- Maximizing number of simultaneous UEs
- Deactivate user grouping

<table>
<thead>
<tr>
<th></th>
<th>Max EVM</th>
<th>Number of Groups</th>
<th>MCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UL</td>
<td>DL</td>
<td>UL</td>
</tr>
<tr>
<td>Maximizing SE</td>
<td>6</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Link quality</td>
<td>12</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Maximizing number of simultaneous users</td>
<td>16</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Deactivate user grouping</td>
<td>16</td>
<td>35</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Uncoded UL throughput (Mbps)</th>
<th>Uncoded DL throughput (Mbps)</th>
<th>Spectral efficiency (bits/s/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximizing SE</td>
<td>182</td>
<td>64</td>
<td>12.3</td>
</tr>
<tr>
<td>Link quality</td>
<td>135.3</td>
<td>53.2</td>
<td>9.4</td>
</tr>
<tr>
<td>Maximizing number of simultaneous UEs</td>
<td>84</td>
<td>58.6</td>
<td>7.1</td>
</tr>
<tr>
<td>Deactivate user grouping</td>
<td>84</td>
<td>0</td>
<td>4.2</td>
</tr>
</tbody>
</table>
Real-time Results for User Grouping

- Link quality
- Maximizing SE
- Maximizing number of simultaneous UEs
- Deactivate user grouping

Table: Real-time Results for User Grouping

<table>
<thead>
<tr>
<th></th>
<th>Max EVM</th>
<th>Number of Groups</th>
<th>MCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UL</td>
<td>DL</td>
<td>UL</td>
</tr>
<tr>
<td>Link quality</td>
<td>6</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Maximizing SE</td>
<td>12</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Maximizing number of UEs</td>
<td>16</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Deactivate user grouping</td>
<td>16</td>
<td>35</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Uncoded UL throughput (Mbps)**: 182
- **Uncoded DL throughput (Mbps)**: 64
- **Spectral efficiency (bits/s/Hz)**: 12.3
Take Aways:

• 5G New Radio ‘Exploits the Spatial Domain’ via large antenna arrays
 • Sub-6GHz ‘aggressive’ spatial multiplying for enhanced spectrum efficiency
 • Lund’s and Bristol’s research influenced 3GPP and the adoption of TDD
 • Commercial deployments of MaMIMO use Beamforming rather than Marzetta’s full spatial signal processing, much lower spectrum efficiencies observed.
Channel hardening

Take Aways:

• 5G New Radio ‘Exploits the Spatial Domain’ via large antenna arrays
 • Sub-6GHz ‘aggressive’ spatial multiplying for enhanced spectrum efficiency
 • Lund’s and Bristol’s research influenced 3GPP and the adoption of TDD
 • Commercial deployments of MaMIMO use Beamforming rather than Marzetta’s full spatial signal processing, much lower spectrum efficiencies observed.
• Also:
 • Difficult to load operational networks to observe ‘high spectrum efficiencies’
 • Beamforming doesn’t support tightly cluster users
• Future activities through CELTIC funding:
 • Distributed MaMIMO
 • Application of AI techniques to enhanced scheduling and robustness
Take Aways: What about Millimetre Wave?

- Experimental work in COST IRACON largely focused on channel characterisation
 - Reflection ……. Diffusion Scatter
 - Spatial Channel Dynamics ……. How to implement cost effective OTA
- Application of millimetre wave:

https://www.youtube.com/watch?v=OIDOi hcqJZg

Any Questions?