

COST Action CA15104 First Scientific Annual Report

COST Action CA15104 (IRACON) aims to achieve scientific networking and cooperation in novel design and analysis methods for 5G, and beyond-5G, radio communication networks.

The scientific activities of the action are organized according to two types of Working Groups: disciplinary and experimental Working Groups. In total, IRACON consists of 6 working groups: Radio Channels (DWG1), PHY layer (DWG2), NET Layer (DWG3), OTA Testing (EWG-OTA), Internet-of-Things (EWG-IoT), Localization and Tracing (EWG-LT) and Radio Access (EWG-RA). A sub-working group of EWG-IoT was also recently created: IoT for Health.

This report details the achievements of IRACON as a whole and of its Working Groups during the first grant period, summarizing the main activities and scientific results, and providing perspectives for the next period.

Authors: Sana Salous, Katsuyuki Haneda, Hanna Bogucka, Jan Sykora, Silvia Ruiz Boqué, Hamed Ahmadi, Wim Kotterman, Moray Rumney, Erik Ström, Chiara Buratti, Carles Anton-Haro, Klaus Witrisal, Florian Kaltenberger, Mark Beach, Narcis Cardona, and Claude Oestges

Editors: Narcis Cardona, Claude Oestges

Date: May 2017

Contents

List of a	acronyms	3
1. Inti	roduction	5
1.1	Scientific objectives of IRACON	5
1.3	Working Groups: structure and coordination	6
1.4	Working Groups: practical implementation	7
2. DV	VG1: Radio Channels	8
2.1	General aspects of DWG1 work	8
2.2	Technical progress	8
3. DV	VG2: PHY Layer	11
3.1	General aspects of DWG2 work	11
3.2	Technical progress	11
4. DV	VG3: NET Layer	12
4.1	General aspects of DWG3 work	12
4.2	Technical progress	12
5. EV	/G-OTA: Over-The-Air Testing	16
5.1	General aspects of EWG-OTA work	16
5.2	Technical progress	16
6. EV	/G-IoT: Internet-of-Things	17
6.1	General aspects of EWG-IoT work	17
6.2	Technical progress	17
7. EV	/G-LT: Localisation and Tracking	19
7.1	General aspects of EWG-LT work	19
7.2	Technical progress	19
8. EV	/G-RA: Radio Access	22
8.1	General aspects of EWG-RA work	22
8.2	Technical progress	22
9. Co	nclusions and Perspectives	24
9.1	Conclusions	24
9.2	Success stories	25
9.3	Perspectives for the second grant period	26
Annex:	List of Temporary Documents	29

List of acronyms

BER BPSK CoMP D2D DTT DWG ECI EMF ETSI EWG GNSS GP HeNB HW IEEE IET IoT ITS ITU-R LSA LT LTE MAC MIMO MOSG MRC MIMO MOSG MRC MIMO MOSG MRC MTC NET NFV OTA PHY PLNC RA RAT RAN RRM SC-FDMA SDN SDR SG STSM TD URSI V2X VNO WG	Bit Error Ratio Binary Phase Shift Keying Cooperative Multi Point Device-to-Device Digital Terrestrial Television Disciplinary Working Group Early Career Investigator Electro-Magnetic Field European Telecommunications Standards Institute Experimental Working Group Global Navigation Satellite System Grant Period Home eNode B Hardware Institute of Electrical and Electronical Engineers Institute of Electrical and Electronical Engineers Institute of Electrical and Technology Internet-of-Things Intelligent Transportation Service International Telecommunication Union – Radio License Shared Access Localization and Tracking Long-Term Evolution Medium Access Control (layer) Multiple-Input Multiple-Output MIMO OTA Sub-Group Maximal Ratio Combining Machine Type Communication Network (layer) Network Functions Virtualization Over-the-Air Physical (layer) Physical Layer Network Coding Radio Access Radio Access Technology Radio Access Network Radio Resource Management Single Carrier Frequency Division Multiple Access Software Defined Radio Study Group Short Term Scientific Mission Temporary Document Union Radio Scientifique Internationale Vehicle-to-Infrastructure Virtual Network Operator Working Group
WG	Working Group
ZF	Zero-Forcing

This page is intentionally left blank.

1. Introduction

1.1 Scientific objectives of IRACON

The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. The Inclusive Radio Communication *Networks* concept defines the technologies for supporting wireless connectivity for any rates, type of communicating units, and scenario. It is expected to be implemented in and beyond the fifth generation (5G) of radio communication networks. Spectral and spatial efficiency are key challenges, in addition to constraints like energy consumption, latency, mobility, adaptability, heterogeneity, coverage, and reliability, amongst others. While many of these aspects are not especially new, the wireless Internet of Things (IoT) beyond 2020 will in particular require revolutionary approaches in Radio Access Technologies (RATs), networks and systems in order to overcome the limitations of the current cellular deployments, the layered networking protocols, and the centralised management of spectrum, radio resources, services and content. Theoretical foundations have to be fully revisited and disruptive technologies are to be discovered during the coming decade.

In this context, IRACON, aims to achieve scientific breakthroughs, by introducing novel design and analysis methods for 5G, and beyond-5G, radio communication networks. IRACON aims at proposing solutions for inclusive and multidimensional communication systems with a wide variety of devices, practical constraints and real-world scenarios, addressing systems ranging from very simple transceivers and sensors, to smartphones and highly flexible cognitive radios. Challenges include: i) modelling the variety of radio channels that can be envisaged for inclusive radios; ii) capacity, energy, mobility, latency, scalability at the physical (PHY) and Medium Access Control (MAC) layers; iii) network automation, moving nodes, cloud and virtualisation architectures at the MAC and Network (NET) layers; iv) experimental research on the practicality of the proposed techniques, addressing Over-the-Air (OTA) testing, IoT, localisation, tracking and radio access.

1.2 Objectives of the first grant period

For the first grant period, IRACON's objectives have been defined at the kickoff meeting as follows:

- 1. agree on specifications and requirements in terms of channel models for inclusive radios;
- 2. define requirements and applications scenarios for Physical (PHY) and Medium Access Control (MAC) layer techniques;
- 3. define requirements and applications scenarios for MAC and network (NET) layer techniques;

- list and organize pan-European laboratory facilities and networks for shared experimental research addressing Over-the-Air (OTA) testing, IoT, localization, tracking and radio access;
- 5. facilitate the collaboration between ECIs through STSMs, with at least 6 missions over the Grant Period (GP);
- establish or maintain liaisons with international standardization bodies, via the identification of liaisons and invited speakers at each IRACON technical meeting: the MIMO OTA Sub-Group (MOSG) of CTIA, the 3GPP RAN4, the ETSI Technical Committee on ITS;
- 7. establish procedures for continuing cooperation with International Scientific Associations, mainly to URSI and IEEE;
- 8. establish links with existing H2020 projects, exploring the possibility of organizing one joint workshop during the grant period;
- 9. train ECIs through the organization of one training school;
- 10. disseminate IRACON position and results via the publication of a newsletter and one position paper (white paper) on 5G; the organization of special sessions and workshop at international conferences.

1.3 Working Groups: structure and coordination

The development of 5G-and-beyond systems requires the joint consideration of all aspects related to the exploitation of radio resources: from the radio channel to the PHY, MAC and Network layers. The techniques envisioned for future wireless standards are in fact so revolutionary that they have impact on many separate aspects of the Radio Access Network (RAN). Massive MIMO and beamforming are good examples of this, as these techniques, implemented at the PHY layer, will heavily impact the strategies implemented for radio resource control at MAC and Network layers, and in turn are strongly dependent of the characteristics of the radio channel. Therefore, research developments on radio channel characterisation, PHY, MAC and NET layers need to be suitably coordinated. IRACON is organised into three Disciplinary Working Groups (DWGs) respectively dealing with the radio channel, PHY as well as MAC/NET layers. Meetings will be organised in such a way that a proper coordination of activities among the three DWGs is achieved, namely via joint sessions regrouping documents with overlapping interests. This coordination will ensure that new techniques developed within IRACON will be jointly devised and assessed from all viewpoints.

Moreover, this coordination of research efforts is further demonstrated within IRACON by the creation of four Experimental WGs (EWGs) that will address specific topics through a transversal approach; experimental facilities will be made available by institutions to IRACON participants in order to test new algorithms, techniques and protocols in real-world contexts, enabling a coordinated effort among experts of separate disciplines, as complex test beds need a variety of suitably joint and coordinated competences. Coordination

among theoretical and experimental activities will be ensured through a backand-forward principle: new ideas, novel techniques envisioned within the DWGs will be considered as candidates for their testing on the experimental facilities made available within the EWGs. At the same time, real-world experiments conducted within the EWGs will provide useful databases of measurements for the theoretical activities brought forward within the DWGs.

1.4 Working Groups: practical implementation

As mentioned, IRACON technical content is organised in Working Groups (WGs) to facilitate the coordination and networking between participants. During technical meetings many of the sessions deal with several of the WGs' interests, being identified as "joint" sessions in such sense.

Every IRACON participant is at least interested in two types of WG: One disciplinary WG, on the basics of (WG1) Radio Propagation and Channel Modelling, (WG2) Communications Physical Layer and (WG3) Radio Network Aspects; plus one Experimental WG related to application scenarios and testbeds: (EGW-LT) Location and Tracking, (EWG-IoT) Internet of Things, (EGW-RA) Radio Access Systems, (EGW-OTA) Over-the-Air Testing.

Essentially, the relationship between the Disciplinary WGs (DWGs) and the Experimental WGs (EWGs) is based on the fact that every of the new algorithms, techniques and protocols developed in the context of a DWG is suitable to be tested in some of the application scenarios described by the EWGs, and on this basis the technical meetings and the discussions are organised. On the other way round, experiments conducted within the EWGs will provide useful feedback and databases of measurements for the theoretical activities brought forward within the DWGs.

2. DWG1: Radio Channels

2.1 General aspects of DWG1 work

The goal of DWG1 is to develop more accurate radio channel models for inclusive deployment scenarios (including but not limited to heterogeneous cells, body area networks and vehicular communications), using carrier frequencies above UHF up to Terahertz as well to co-develop antenna systems that can cope with the inclusive aspects of the targeted deployments.

DWG1 is chaired by Sana Salous and Katsuyuki Haneda.

2.2 Technical progress

In the area of **channel sounding**, the following major technical trends have been observed.

- Novel radio channel sounding campaigns in various scenarios, including dynamic body-centric, outdoor-to-indoor and train-to-infrastructure and in-tunnel scenarios at below- and above-6 GHz.
- Novel channel sounding techniques, e.g., angularly highly-resolved massive MIMO indoor measurements at various radio frequencies, and reflections and scattering measurements from various wall materials at 60 GHz.
- New channel sounding campaigns including outdoor 52 GHz channels, train-to-train channels, indoor ultra-wideband 70 GHz channels, rescue scenarios in a forest from aircraft and self-interference channels of inband full-duplex radios in a train. Plans for long-term measurements of mm-wave channels were also mentioned.
- Characterization of measured channels, such as multipath cluster and diffuse scattering properties at 11 GHz and frequency dependency of indoor channels.
- Several new channel sounding campaigns in different propagation environments such as maritime container environments at 2 GHz, multifrequency measurements of outdoor-to-indoor insertion loss measurements (3, 10, 17, 28 and 60 GHz), outdoor measurements with massive antenna array at 15 GHz, and 300 GHz short-range indoor lineof-sight link measurements with antenna misalignment effects.

Concerning **radio channel modelling theory**, the following trends can be mentioned.

• Studies of improved channel modelling methods and frameworks. An extension of high-resolution propagation path parameter estimation methods for ultra-wideband signals was presented for example.

- Discussions on radio propagation models and frameworks. Physicalstatistical models of radio channel propagation were proposed. Suitability of the 3GPP channel model for 5G simulations and generality of the map-based model was addressed. Frequency dependency of large-scale channel parameters, time-correlation of mobile-to-mobile links, over-the-rooftop radio wave propagation and improved models of diffuse scattering were also reported.
- Theory of characteristics modes for terminal antenna design that provides superior decoupling of antenna elements in an array and hence improved multi-antenna link performance.
- New activities of channel characterization, including the frequency dependency of de-polarization effects in radio waves at millimetrewaves, indoor multipath clustering at 11 GHz and multi-modal modelling of dense multipath components.

Finally, in the area of **channel simulation and prediction**, the main results are as follows.

- Propagation channel simulations, which are mainly implemented through optical approximation of radio propagation called ray-tracing, including the use of graph-theory, the radiosity method and the point cloud ray-tracing for frequencies below- and above-6 GHz.
- Proposals for an improved standard channel model, e.g., inclusion of two-path ground reflection at millimetre-waves.
- Performance analysis of antennas and systems, such as a reconfigurable MIMO antenna mounted on a car roof and self-interference cancellation in time-varying scenarios for in-band full-duplex radios.
- New simulation methods of radio propagation and coverage, such as unequi-spaced Laplacian transform based physical optics, volume electric field integrate equations.
- Improved tools of radio coverage analysis. Cloud-computing-powered ray-tracing platform with library of different radio environments, e.g., train carriage and outdoor hotspots was introduced. Other TDs report a radio coverage simulator including human body and bus blockage models for millimetre-waves, and also a massive antenna array at the base station.

The following are the main highlights of DWG1 during the first year:

• as a continuation from the COST IC1004, WG1 published a white paper on "Channel measurement and modelling for 5G networks in the frequency bands above 6 GHz";

http://www.iracon.org/wp-content/uploads/2016/03/SanaSalous.pdf.

 three contributions to the ITU-R SG3 with the name of United Kingdom, concerning clutter loss, rms delay spread and path loss in residential areas all in the millimetre wave band for future 5G systems in March

2017 as well as contributing to the site general path loss model submitted to the ITU as input from Correspondence Group CG 3K-6;

- organization of a convened session in the 11th European Conference on Antennas and Propagation (EuCAP2017), Paris, France;
- presentation of an invited paper in EuCAP2017 on 'Towards a channel model for 5G';
- organization of a workshop on 'Radio Propagation and Technologies for 5G', Durham University, United Kingdom, on 03 October 2016, with about 58 participants;
- liaison with the General Assembly of URSI Commission C on Radiocommunication systems and signal processing, and with the European Union Horizon 2020 projects mmMAGIC and 5G X-haul;
- a number of collaborative publications made by participating institutions about joint radio channel sounding and modelling;
- contribution to the 5G Alliance -Measurement White Paper.

3. DWG2: PHY Layer

3.1 General aspects of DWG2 work

DWG2 focuses on a very wide area of PHY layer related aspects in wireless communication networks. It includes all issues related to coding, signal processing, estimation and decoding, HW imposed constraints and solutions, distributed processing in wireless networks. This huge diversity of areas together with a limited number of researches involved affects the form and the focus of the research results.

The areas and some selected achievements that were addressed during the first period are in the next section. DWG2 is quite diverse and in principle quite universally applicable and the results form rather tools than 'turn-key' solutions.

DWG2 is chaired by Hanna Bogucka and Jan Sykora.

3.2 Technical progress

The technical contributions can be broadly divided into

- advanced waveforms, coding, signal processing, detection/ estimation/synchronization,
- distributed and cooperative PHY processing in wireless networks (including physical-layer network coding (PLNC)),
- HW related problems.

In the area of **advanced waveforms, coding, signal processing, detection/ estimation/synchronization**, results were obtained in advanced waveform design and generic modulation description formats, finite alphabet constrained multiuser interference cancellation, impulsive noise modelling, interference aware and cancelling receivers, processing and interference modelling in large stochastic networks, iterative equalization in MIMO system, effects of the estimation errors in MRC/ZF M-MIMO processing solved by user grouping;

Regarding **distributed and cooperative PHY processing in wireless networks**, contributions of DWG2 covered: estimation of channel and network state information in large PLNC networks under specific waveform/signal-space (non-orthogonal) constraints, PLNC coding design (the nonlinear map designs and also lattice-based quantization and forward approaches, Compute and Forward in massive MIMO type of cell-free scenario, evaluation of the analytic approximation of BER in PLNC coded BPSK scenario), computation over the networks with aggregation algorithm at nodes;

Results in **HW related problems** range from advanced radio access HW design (full duplex terminals, high dynamics range receiver architectures) to HW hybrid full-duplex self-interference cancellation.

4. DWG3: NET Layer

4.1 General aspects of DWG3 work

The goal of DWG3 is to investigate the NET layer aspects that will characterise the merger of the cellular paradigm and the IoT architectures, in the context of the evolution towards 5G-and-beyond. In particular, the following objectives will be pursued : 1) identifying and assessing the network architecture of 5G-andbeyond systems; 2) studying the impact of the "fog" networking/computing approach foreseen for 5G, on the evolution of the RATs; 3) evaluating radio resource management approaches compatible to the new requirements set by future mobile radio networks (e.g. on latency); 4) proposing new concepts and paradigms to take account of the plethora of new applications arising from the IoT context.

During the first Management Committee Meeting, DWG3 attendees agreed in the main keywords of the working group. Considering the research papers discussed at the sessions, but also the research activity of the members, as well as topics from the Radio Networks Group of the past COST IC1004 action, we grouped into six main "umbrella" topics:

- 5G and beyond Networks architecture
- RRM & scheduling
- Protocols
- Spectrum management and sharing
- SDN and NFV
- Scenarios

A second list of subtopics was also approved: 4G + cellular, Beamforming, Cloud RAN, Green Networks, Network architecture, Network optimization, Network planning, Network deployment, Network simulation, Network virtualization, Relaying, Scenarios, Scheduling and RRM, Small cells, Spectrum management, Spectrum sharing, Standards, Ultra-low latency, Internet of Things, Network failure management and trouble shooting.

DWG3 is chaired by Silvia Ruiz Boqué and Hamed Ahmadi.

4.2 Technical progress

Both chairs and DWG3 members discuss about joint research activities and publications, Short Term Scientific Missions (STSM), training schools and workshops that could be organized under the umbrella of the action, as well as about the possibility to organize special sessions related with DWG3 topics at International Conferences and Journals.

DWG3 had the opportunity to discuss about different **network aspects of Small-Cell Network deployments**. The effects on coverage and interference of Hyper-Dense Small-Cell Network deployments on an urban environment were studied using a realistic 3D scenario to model buildings and to calculate ray-optical pathloss predictions. Optimization of the dynamic allocation of resources is obtained by defining a new auction-based allocation mechanism

through which virtual network operators (VNOs) can bid for a combination of resources, specifically the cloud-based antennas and the spectrum. Details of the first world's License Shared Access (LSA) pilot in the 2.3-2.4 GHz band to manage spectrum sharing in future 5G wide area cells were given describing the testbed architecture and showing results from measurements and simulations, as well as the sharing framework and the rules currently defined to protect the incumbent users. EMF exposure under the context of the same real dense indoor femtocell environment deployed for the LSA, with 2 outdoor nodes and 4 femtocell indoor nodes were analysed showing through measures that indoor electric field level is much lower than the thresholds commonly adopted worldwide.

LTE HetNets performance was also one of the key topics of the meeting, focusing on the implementation of Carrier Aggregation operating at 800 MHz and 2.6 GHz including realistic interference constraints, or in the performance comparison in terms of goodput, packet loss ratio and delay of six different packet schedulers using open source LTE-Sim simulator that includes HeNBs as well as heterogeneous traffic. Massive MIMO was introduced for future seamless high-data rate wireless connectivity for railways, defining the architecture for several scenarios including inter and intra-wagon, station, train-to-infrastructure and infrastructure-to-infrastructure communications.

Advances in **MTC and IoT** was the third topic discussed by DWG3 members, as for example the definition of the technical restrictions in the maximum power that could be transmitted by a narrwoband LTE (IoT) network when it shares TV-White-Spaces with DTT, or the definition of a new distributed and fast algorithm to allow each Delay Tolerant Network node to identify if the sensors are producing faulty data. Other interesting works define algorithms to enable traffic steering between IEEE 802.11p and LTE for V2X communications or showing strategies to reduce energy consumption from the traditional energy grid of a wireless access network and its trade-off with respect coverage and capacity.

In the area of **network virtualization**:

- the possibility of auctioning the spatial streams in a co-located or distributed massive MIMO system was explored: this model enables the infrastructure operator to maximize it revenue by assigning the spatial streams to the virtual network operators who value the resources the most;
- a model of virtual radio resource management was proposed to provide quality of service guarantee for different classes of services in a heterogeneous cloud-based radio access network (C-RAN): this work solved a nonlinear optimization problem aiming for proportional fair solution for allocation of data rate to different services according to their QoS requirements;
- a customizable resource virtualization algorithm for multi-user data scheduling in Long term evolution (LTE) C-RAN deployment was also discussed;
- an analysis of a new RRM scheme for Virtualized RAN was based on modified Proportional Fair when there is not enough capacity to serve all

subscribers, delaying some users to free capacity for high priority services;

 a system level evaluation in a realistic scenario of a new Dynamic Base Station clustering for CoMP with Joint Transmission for DL was performed, comparing the performance with respect no CoMP or static clustering.

In the area of **device-to-device (D2D) communication**, an interference graphbased approach for LTE D2D resource allocation with multi-user sharing of resource blocks considered the single carrier frequency division multiple access (SC-FDMA) constraint of assigning continuous resource blocks to user equipment. The presented results show potential gains with increasing amount of D2D pairs per cell.

For **smart grid communications**, the feasibility of using LTE cellular networks for real-time smart grid state estimation, which is receiving the measurement reports from different nodes installed in the smart grid, was investigated. The work selected the uplink LTE radio delay performance as the key performance indicator for the collection of desired measurements. Different types of measurement nodes and different resource allocation techniques have been studied in this work and their results have been compared. This work was a part of SUNSEED project and the presenter also introduced the project.

4G+ networks topics covered: a new Linear Downlink Power Control Algorithm for Cellular Networks suitable for distributed networks was analysed through simulations. A new methodology was investigated to balance the load in LTE HetNet urban networks, with throughput gains up to 8%, based on Inter-Frequency Handovers for 900, 1800 and 2600 MHz bands. New LTE features to be used for PPDR (Public Protection and Disaster Relief) networks replacing TETRA were also introduced.

Regarding the use of **drones**, an explanation of how femtocell Base Stations mounted on drones could help in creating Ad-Hoc networks in emergency scenarios, combined with BTSs installed on public transport and emergency service vehicles. The concept of moving networks is introduced by using base stations mounted on UAVs and moving according to traffic and network needs. An explanation of capacity improvements achieved in an urban area is given. Another work investigated the potential of mounting LTE femtocell base stations on drones to offer an alternative for the saturated existing wireless infrastructure. In this work, the authors studied the number of required drones considering the coverage area, flight altitude and drone type.

For **Licensed Shared Access**, the details of the first world large scale Licensed Shared Access (LSA) pilot applied to a live LTE network at 2.3-2.4 GHz band have been explained, in terms of technical feasibility and regulatory compliance.

For **MTC and IoT:** a dynamic Resource Partitioning scheme between Massive Broadband and Machine Type Communication traffic in 5G networks was defined, to avoid collisions between both traffic types, using a control loop to calculate the average collision probability and to estimate traffic load.

Regarding dissemination activities, Professor Roberto Verdone (University of Bologna) and member of DWG3 organized a tutorial on "Integrating the internet of things into 5G and beyond networks". The idea of organizing a workshop or a training school in one of the topics of DWG3 was discussed, with possible topics such as Spectrum Management, or Virtualized Networks.

5. EWG-OTA: Over-The-Air Testing

5.1 General aspects of EWG-OTA work

The goal of this EWG is to investigate and validate new OTA testing methods, channel models (in coordination with DWG1) for implementation in advanced OTA testing set-ups for inclusive networks (large objects, small ad-hoc networks, adaptive networks, etc.).

EWG-OTA is chaired by Wim Kotterman and Moray Rumney.

5.2 Technical progress

A few important new themes emerged in the Experimental Working Group on Over-the-Air testing. Compared to the standardization of MIMO OTA testing of handheld user equipment, the contributions to the IRACON Action concentrated on OTA testing (electrically) large objects and the emergency created by the advent of the fifth generation mobile communication systems. With respect to the latter, two aspects are prominent.

The first is the intended **incorporation of millimetre wave bands** with their own peculiarities w.r.t. the propagation channel posing large problems. Channels models are at the very heart of every Over-the-Air testing procedure and it is fair to say that the development of realistic channel models for mmwaves did not get the attention channel modelling received during the development of former generations of mobile communication systems. As a result, developing tests for full functional compliance will be delayed. This has to be seen in the context of the second aspect, the very tight time schedule for 5G. Information about the system is supplied at the very last moment. This too, hampers development of OTA testing for 5G. Now, one approach is simply extending testing procedures for 3G/4G to components of the 5G system design as far as these are defined

The aforementioned **electrically large objects** are either vehicles, in the context of cooperation between automated vehicles through ITS (dedicated communication systems), or large Base Station antennas. The latter can be divided into Massive MIMO base station or beam-steering bases station for mm wave communication. Although, in principle, the same approaches can be applied to OTA testing as for small equipment, scaling up the set-ups is economically not viable. This scaling involves the dimensions of the equipment-under-test in wave lengths and going from devices of one or two wavelengths as dominant dimension to constructs of hundred wavelengths across or more, results in a similar scaling in costs (mainly made up by the large-bandwidth signal processing and high-performance RF hardware).

In the EWG, different approaches were tentatively presented. However, for Base Station array antennas with large numbers of antenna elements, it is highly unlikely that test set-ups, of whichever method, with a smaller number of antenna elements than that of the Base Station array will suffice, simply because the required number of degrees of freedom is not available.

6. EWG-IoT: Internet-of-Things

6.1 General aspects of EWG-loT work

The goal of EWG-IoT is to support the evolution of 5G networks through the inclusion of the IoT component, via the investigation and assessment of the network architectures, the comparison among the many approaches currently devised for the development of an ecosystem of the IoT platforms and applications in terms of operating systems, and the experimental validation of different protocols for large scale applications of the IoT.

EWG-IoT is chaired by Erik Ström and Chiara Buratti.

6.2 Technical progress

During the first year, EWG-IoT had TDs (13 in Lille, 8 in Durham and 19 in Lisbon). This WG being focused on the experimental facilities, the first year was dedicated to identifying, present and categorize the experimental facilities made available by the COST Action Institutions. The main facilities identified are the following:

- **FIT/CorteXlab**, INRIA SOCRATE INSA Lyon, France. It is a large facility in a 200 m² room, entirely faradised and covered with EM, absorbers, equipped with 22 USRPs (National Instruments), 16 PicoSDRs, (MIMO 2x2 and 4x4, from Nutaq) and 42 WSN nodes (Hikob). All these equipments are remotely accessible and programmable through the Internet to launch experimentations
- **iMinds w-iLab.t,** Ghent University, Belgium. It is a generic wireless testbed equipped with 60 wireless nodes with IEEE 802.11a/b/g/n, IEEE 802.15.4 and IEEE 802.15.1 interfaces. In addition, the lab offers mobile nodes to the experimenters. These mobile nodes consist of a Roomba vacuum cleaning robot with the same wireless node configuration mounted on top of it. The location also hosts software defined radio platforms (URSP, WARP) and spectrum scanning engines developed by IMEC.
- **EuWIn@Bologna,** Bologna University, Italy. It is composed of two platforms: i) a network composed of 52 radio devices compliant with the IEEE 802.15.4 standard, flexible enough to allow the development and testing of any routing algorithm compatible with such a standard, and deployed in fixed positions at the University of Bologna; 2) a platform composed of 100 devices battery charged and having different sensors on board.
- **Resource for Vehicle Research (ReVeRe),** Chalmers University of Technology, Sweden. It enables full vehicle control for various real-traffic test scenarios on public roads or on test tracks.

Many others have been presented and they are all included into a webpage of the IRACON website (see <u>http://radiokom.eti.pg.gda.pl/IRM/</u>), hosting a short description of all these available facilities.

The main research topics and trends of this EWG are briefly summarized below.

- Vehicular Communications. This research regards the study of communication network architecture for future railway, aiming at developing high-data rate wireless connectivity, such as the investigation of IEEE 802.11p/LTE hybrid solutions for vehicle-to-X communications. An extensive real-world measurement campaign conducted along Austrian railways, using 3G/4G user equipment located on-board, has been performed.
- Energy-efficiency. Research topics are: experimental characterization of energy consumption in wireless sensor networks working in the 2.4 GHz band, when affected by interference coming from Wi-Fi; experimental validation of wake-up radio receiver; design of energy efficient routing protocol for WSNs.
- SDN-based IoT networks. Novel architectures for enabling the SDN paradigm into the IoT world have been proposed. One solution is based on Locator Identifier Separation Protocol (LISP), while another one is based on a proprietary design integrated into an OpenFlow-based SDN network. Experimental results show the validity of these solutions.
- Routing and MAC protocols. A novel joint scheduling and routing algorithm for centralised IoT networks has been proposed and integrated into the 6TiSCH (IPv6 over the TSCH mode of IEEE 802.15.4e) protocol stack. The solution has been tested via experimentation in the framework of a joint research activity between UNIBO and UNIBL. Other research regards the study of joint routing and scheduling algorithms based on backpressure and incorporating energy harvesting constraints.
- Low Power Wide Area Networks. The research regards the study via experimentation of new solutions for the IoT, such as LoRa and NB-IoT.
- IoT for Health. The main topics addressed are: path-loss modelling for off-body channel; methodology to construct an accurate UWB phantom for in-body to on-body propagation; broadband measurement of electromagnetic tissue phantoms using open-ended coaxial systems; antenna system design for wireless capsule endoscope application; nano-communications and routing mechanisms through in-body nanonetworks; IEEE 802.15.6-based body area networks.

Given the interest in Health-related topics, a Sub-WG on "IoT for Health" (EWG-IoT-Health) has been formally created and approved during the meeting in Lisbon, and the following Sub-WG Co-Chairs, Slawomir Ambroziak and Kamran Sayrafian, were elected.

Finally, we underline that in this first year this EWG organized:

- Tutorial on "Integrating the Internet of Things into 5G and Beyond Networks", gave by Roberto Verdone in Lisbon on January 31st 2017;
- Joint Workshop with EWG-Loc on "Dependable Wireless Communications and Localization for the IoT" which will take place in Graz on September 2017.

7. EWG-LT: Localisation and Tracking

7.1 General aspects of EWG-LT work

The goal of this EWG is to follow the development of 5G standardisation, taking advantage of the new techniques implemented and defined (millimetre waves, massive MIMO, etc.) to design and test new localisation and tracking techniques for devices, working both in outdoor and indoor environments.

EWG-LT is chaired by Carles Anton-Haro and Klaus Witrisal.

7.2 Technical progress

During the first year, the EWG-LT has organized several sessions at the Lille, Durham and Lisbon meetings. The number of TDs presented were three, three and six, respectively. Besides, one joint session with EWG IoT was organized in Lisbon. In general, sessions were well attended and a number of interesting and lively discussions took place.

This experimental working group has also made a substantial effort to identify and bring to the attention of WG participants a number or research infrastructures owned by IRACON participants. The ultimate goal is to foster joint research activities among IRACON participants and, also, to stimulate Short Term Scientific Missions (STSMs). A non-exhaustive list of platforms includes:

- UWB high-end indoor positioning testbed (Graz University of Technology, Austria): Testbed for UWB indoor positioning based on a high-performance channel sounder for the 3-10 or 0-3 GHz frequency ranges and flexible MIMO antenna configurations up to 4 x 6. This Research Infrastructure is willing to exchange of data to drive joint research on indoor positioning.
- GESTALT® (Centre Tecnològic de Telecomunicacions de Catalunya, Spain) includes a set of commercial of-the-shelf hardware and an open source software, constituting a state-of-the-art platform for research and development of next-generation GNSS receivers. The core of the platform is the GNSS-SDR receiver which has been extended to support multi-band and multi-system operations. As a relevant case of use to validate the research facility, CTTC presented a triple band GNSS-SDR customization capable of receiving four GNSS signals in real-time: GPS L1 C/A, GPS L2CM, Galileo E1b, and Galileo E5a.
- w-iLab.t testbed (UGent/iMinds, Belgium): This testbed is equipped with 60 wireless nodes, with IEEE 802.11a/b/g/n, IEEE802.15.4 and IEEE802.15.1 (Bluetooth) interfaces. In addition, the w-iLab.t Zwijnaarde offers mobile nodes to the experimenters which are particularly relevant for research indoor localization techniques. These mobile nodes consist of a Roomba vacuum cleaning robot with the same wireless node configuration mounted on top of it. The location also hosts software

defined radio platforms (USRP, WARP) and spectrum scanning engines developed by IMEC. The iMinds w-iLab.t allows flexible testing of the functionality and performance of wireless networking protocols and systems in a time-effective way, by providing hardware and the means to install and configure firmware and software on (a selection of) nodes, schedule automated experiments, and collect, visualize and process results.

• FemtoCell Indoor testbed (U. of Malaga, Spain): This testbed comprises +10 femtocells deployed in a indoor/lab environment in the University of Malaga. It is an outcome of the MONOLOC project. As an application example, the testbed can be used to develop location-based methods for the identification of coverage gaps in femtocell environments.

These testbeds have been/are in the process of being incorporated in the socalled IRACON's registry of Research Infrastructures. The ultimate purpose is to raise awareness and/or conduct dissemination activities via its publication in the IRACON website.

As far as research activities are concerned, in the first year of IRACON priority has been given to the following areas:

- Localization and positioning techniques for 4G and 5G communication networks: This includes the design of accurate and robust positioning techniques for 5G systems, and the analysis of how accuracy scales with signal bandwidth and diversity gain in dense multipath environments. It is foreseen that mm-wave 5G systems, employing both, large bandwidths and antenna-array beamforming, will provide the radio frontends needed for highly accurate and robust indoor positioning. Complementarily, the impact of frequency-hopping schemes for narrowband-loT positioning in 4G and 5G networks has been investigated, as well. Results indicate the feasibility to achieve a position accuracy below 50 meters, by covering a system bandwidth of 10 MHz with two consecutive hops. Also, several techniques have been developed to detect coverage gaps in femtocell networks by leveraging on the signal received by geo-located user terminals.
- Channel modelling, propagation and positioning: Here, some EWG members have employed a geometry-based stochastic channel model to analyze and characterize the ranging error variance as a function of the bandwidth, covering the narrowband up to the UWB regimes in dense multipath environments. Other authors have analysed the achievable ranging and positioning performance in an RFID system for two design constraints: (i) the bandwidth of the transmit signal and (ii) the use of multiple antennas at the readers. The ranging performance has been derived for correlated and uncorrelated constituent channels by utilizing a geometry-based stochastic channel model for the downlink and the uplink. Complementarily, other participants to this EWG has also developed an emitter location technique using game engines 3D raybased tools and Power Difference of Arrival (PDOA) information.

- Synchronization, tracking and data fusion techniques are of utmost importance for this EWG too. Hence, topics such as (i) the real-time localization of a moving target with mobile sensors using hybrid RSS and angle of arrival information; (ii) the derivation of methods for estimating time-difference-of-arrival in a network of receiver nodes not requiring explicit synchronization between such nodes: or (iii) the use of virtual multi-antenna array for estimating the angle-of-arrival of a RF transmitter, have been investigated in several works. Research has been conducted at the analytical, simulation and/or experimental levels.
- Experimental validation and platforms: Here, on the one hand, efforts have been devoted to experimentally validate the use of off-the-shelf DecaWave UWB Transceivers for high-accuracy multipath-assisted indoor positioning. Specifically, it has been shown that the positioning algorithm, requiring information from a single anchor only, achieves reliable and robust positioning at an accuracy below 0.5 m. On the other, GNSS-SDR, an open source software-defined GNSS receiver/platform for experimentation in satellite-based positioning techniques has been presented to EWG participants too.

Finally, the EWG-LT has organized several dissemination activities. In particular, a workshop on "Localization and Tracking: Indoor, Outdoor and Emerging Networks" was organized and held in Globecom 2016. Currently, the EWG leaders are working towards the organization of a joint workshop with the EWG-IoT on "Dependable Wireless Communications and Localization for the IoT" which will be held in Graz on September 2017.

8. EWG-RA: Radio Access

8.1 General aspects of EWG-RA work

The goal of this EWG is to experimentally validate the many techniques that will be implemented at the PHY and MAC layers of the radio access part of 5G, especially those developed within DWG2. New waveforms, cognitive radio approaches, or massive MIMO, are possible examples.

EWG-RA is chaired by Florian Kaltenberger and Mark Beach.

8.2 Technical progress

During the first three technical meetings, a total of 18 technical documents were presented. The majority of the documents can be attributed to two main topics: massive MIMO and full duplex radio.

Massive MIMO is one key concept for 5G, especially (but not only) for frequency bands above 6GHz. It allows to increase the spectral efficiency of the system by using a large number of antennas at the base station to spatially multiplex signals to multiple users concurrently.

In a strategic partnership with Lund University (Sweden) and National Instruments (NI), have made significant contributions to the evolution of a key enabling technology for 5G wireless connectivity. They have jointly advanced the state-of-the-art of massive MIMO, using experimental hardware provided through the joint venture between Bristol City Council and the University of Bristol (Bristol-Is-Open (BIO)). In their experiments they were able to serve 22 user clients simultaneously in the same 20 MHz band which, with a total throughput of nearly 3 Gbps and a spectral efficiency of 145.6 bits/s/Hz, a world record.

Another massive MIMO testbed has been implemented at Eurecom, France. This testbed focuses more on a holistic massive MIMO approach, using existing 4G technology based on OpenAirInterface. Using this testbed, researchers at Eurecom managed to get a connection to a commercial phone served by a 64 element antenna array base station using reciprocity-based massive MIMO precoding.

Full duplex radio, where devices can send and receive signals at the same time, is as old as radio itself, but only recently significant breakthrough has been achieved to make such systems practically feasible. Some of this work carried out within the IRACON EWG-RA has been conducted by Bristol university: First, novel low-complexity algorithms have been devised to quickly measure and adjust the balance network impedance, so that an adaptation loop can easily track changes in antenna impedance. Second, a novel adaptive method of generating a signal to cancel the self-interference has been devised, based on the frequency-domain equalizer which is relatively trivial in an LTE system. Together with the adaptive impedance balancing, over 80 dB suppression of the local transmitted signal in the receiver can be achieved. Third, a further reduction of 20dB has been obtained by applying non-linear signal processing,

based on Volterra kernels, which can be implemented in the digital domain. Fourth, field tests in hand-held device use-cases, and high speed (road and rail) deployment scenarios, have also demonstrated performance in demanding dynamic radio propagation conditions.

Finally, **testbeds** are an important part of EWG-RA. Together with the other experimental working groups it was decided that a list of testbeds that are actively used within the action should be created. Each testbed has to be presented at least once in a TD to be included in that list. The initial list of testbeds is

- the Lund massive MIMO testbed
- the Bristol massive MIMO testbed (TD(16)02031)
- the Eurecom massive MIMO testbed (TD(16)02044)
- the METIS-II 5G visualization tool (TD(16)02016)
- CASTLE: A user-friendly platform to test, evaluate and develop contemporary wireless communication standards (TD(17)03027)
- Experimenting Cognitive Radio Communication with GNU Radio on CorteXlab (TD(17)03077)
- Update on Electrical Balance Duplexer Performance in High Speed Rail Applications (TD(17)03033)
- Link Performance Evaluation and Channel Propagation for mmWave Systems (TD(17)03047)

9. Conclusions and Perspectives

9.1 Conclusions

During its first year, IRACON has successfully launched its Working Groups and started working towards its objectives. As described in the previous sections, all WGs are progressing according to plan and have completed the assigned objectives for the first grant period.

The following table illustrates the achievements over the first GP as compared to the GP objectives detailed in Section 1.

1	Agree on specifications and requirements in terms of channel models for inclusive radios	Covered by DWG1 (see Section 2)
2	Define requirements and applications scenarios for Physical (PHY) and Medium Access Control (MAC) layer techniques	Covered by DWG2 (see Section 3)
3	Define requirements and applications scenarios for MAC and network (NET) layer techniques	Covered by DWG3 (see Section 4)
4	List and organize pan-European laboratory facilities and networks for shared experimental research addressing Over-the-Air (OTA) testing, IoT, localization, tracking and radio access	First issue of the list now online → <u>http://radiokom.eti.pg.gda.pl/IRM/</u>
5	Facilitate the collaboration between ECIs through STSMs, with at least 6 missions over the Grant Period (GP)	10 STSMs funded
	Establish or maintain liaisons with international standardization bodies	 On-going action (members of IRACON are active members of the MIMO OTA Sub-Group of CTIA and the 3GPP RAN4) Contribution to ITU-R SG3 (see Section 2.3)
6		 IRACON liaisons: → 3GPP – Aki Hekkala → URSI – Sana Salous → ITU-R – Sana Salous and Belen Montenegro → IEEE 1900.6 – Kostas Katzis
7	Establish procedures for continuing cooperation with International Scientific Associations	 IRACON liaisons: → URSI – Sana Salous → EurAAP – Claude Oestges

		➔ EURACON – Roberto Verdone
8	Establish links with existing H2020 projects, exploring the possibility of organizing one joint workshop during the grant period	 IRACON liaisons: → H2020 METIS-II – Narcis Cardona → H2020 mmMAGIC – Mark Beach → H2020 5G X-haul – Mark Beach → CommNet (EPSRC network) – Mark Beach → ITN WiBEC – Narcis Cardona → 5G initiative – Fernando Velez
9	Establish links with existing H2020 projects, exploring the possibility of organizing one joint workshop	Organization of one joint training school with ITN WiBEC (Antennas and Propagation for Body Communications), gathering xx participants
10	Train ECIs through the organization of one training school	Organization of one joint training school with ITN WiBEC (Antennas and Propagation for Body Communications), gathering xx participants
11	Disseminate IRACON position and results via the publication of a newsletter and one position paper (white paper) on 5G; the organization of special sessions and workshop at international conferences	 Publication of one white paper on 5G channel models http://www.iracon.org/wp-content/uploads/2016/03/SanaSalous.pdf Organization of one full-day workshop at PIMRC 2016 http://www.iracon.org/workshops/pimrc-2016/ Organization of one full-day workshop in cooperation with IET http://www.iracon.org/workshops/radio-propagation-and-technologies-for-5g/ Organization of one special session at EuCNC2016 http://www.iracon.org/special-session/special-session-at-eucnc-2016/ Organization of two special sessions at EuCAP2017 http://www.iracon.org/special-sessions.at-eucap-2017/

9.2 Success stories

A few success stories are outlined below:

• at each management committee and technical meeting, the attendance

is largely above the strict number of management committee members (around 100 attendants per meeting, including many ECIs): this illustrates that IRACON WGs are really seen as a natural biotope by many PhD students;

- a very large number of technical documents have already been produced (see the full list in annex), many of them by ECIs;
- IRACON has already published three Newsletters, highlighting a number of important scientific topics (each issue is downloaded more than 300 times);
- as a continuation from COST IC1004, IRACON published a white paper on "Channel measurement and modelling for 5G networks in the frequency bands above 6 GHz",
- three contributions were submitted to the ITU-R SG3 in the area of millimetre wave channel modelling for future 5G systems,
- the structuring of pan-European laboratory facilities and networks for shared experimental research was carried out: the list can be consulted on IRACON website,
- two IRACON ECIs received the Best Propagation Paper Award and the Best Student Paper Award at EuCAP 2017 (both papers were presented in IRACON special session on "mm- and THz- wave propagation measurements and modelling for ultra-high data rate communications").

9.3 Perspectives for the second grant period

In the next period, IRACON will intensify its activities, in particular with respect to scientific dissemination. The GP objectives have been set as follows:

- discuss and submit contributions about concerted 5G radio channel models to international bodies (namely, ITU-R);
- 2. define IRACON Reference Scenarios and provide assessment of 5G radio access techniques through experimental platforms;
- promote the use of pan-European laboratory facilities and networks for shared experimental research addressing Over-the-Air (OTA) testing, IoT, localization, tracking and radio access, using a shared web platform;
- 4. facilitate the collaboration between ECIs through STSMs (at least 6 missions over the GP);
- establish or maintain liaisons with international standardization bodies, via the identification of liaisons and invited speakers at each IRACON technical meeting: the MIMO OTA Sub-Group (MOSG) of CTIA, the RAN4 of 3GPP that pursue standardized OTA tests for LTE User Equipment, the ETSI Technical Committee on ITS, and the URSI Commission C, among others;

- 6. maintain on-going links with existing H2020 projects, exploring the possibility of organizing one joint workshop in the grant period;
- 7. train ECIs through the organization of two training schools, with a focus on basic and advanced competences;
- 8. disseminate IRACON position and results via the ongoing publication of a newsletter, the animation of a blog and the issue of one position paper (white paper) on new localization techniques suitable for 5G and the Internet of Things; the organization of at least two special sessions at international conferences (EuCNC, EuCAP); the organization of one fullday IRACON workshop in conjunction with an MC meeting;
- 9. discuss COST gender policy through women-only meetings at MC meetings, with inputs to the newsletter or to the blog.

Annex: List of Temporary Documents

	TD number	Title	Authors
1	TD(16)01002	Impact of antenna position on performances in relay-assisted network	Jean-Marc Conrat, Issam Maaz, Jean-Christophe Cousin
2	TD(16)01003	Radio Channel Measurements in Body- to-Body Communications in Different Scenarios	Slawomir J. Ambroziak, Luis M. Correia, Kenan Turbic
3	TD(16)01004	Initial Results from Millimeter-Wave Outdoor-to-Indoor Propagation Channel Measurements at 3, 10 and 17 GHz	Cheikh A. L. Diakhate, Jean- Marc Conrat, Jean-Christophe Cousin
4	TD(16)01005	Constructive Interference through Symbol Level Precoding for Multi-Level Modulation	Maha Alodeh, Symeon Chatzinotas, Bjorn Ottersten
5	TD(16)01006	Reducing the impact of solar energy shortages on the wireless access network powered by a PV panel system and the power grid	Margot Deruyck, Daniela Renga, Michela Meo, Luc Martens, Wout Joseph
6	TD(16)01007	Impact of Electromagnetic Interference on Vehicular Antenna Performance	Irfan Mehmood Yousaf, Buon Kiong Lau, Björn Bergqvist
7	TD(16)01008	On Characteristic Modes of MIMO Terminals With Real Components	Zachary T. Miers, Augustine Sekyere, John Ako Enohnyaket, Max Landaeus, Buon Kiong Lau
8	TD(16)01009	Analysis of f-OFDM as a candidate waveform for 5G	Kun Chen Hu and Ana Garcia Armada
9	TD(16)01010	Scenario Partitioning for High Speed Railway	Bo Ai, Ke Guan, Ruisi He, Yan Li, Jingya Yang, Qi Wang, Zhangdui Zhong, Hua Song
10	TD(16)01011	Dedicated Social Network Architecture for Rail Traffic Systems	Bo Ai, Ke Guan, Yan Li, Ruiqi Zhang, Yue Zhao, Guoyu Ma, Zhangdui Zhong, Lei Xiong, Jianwen Ding, Hua Song
11	TD(16)01012	Communications Network Architecture for Future Railway	Bo Ai, Ke Guan, Yan Li, Qi Wang, Ruiqi Zhang, Yue Zhao, Guo-Yu Ma, Zhangdui Zhong, Hua Song
12	TD(16)01013	Dense Multipath Component Parameter Estimation in 11GHz-band Indoor Environment	Kentaro Saito, Takada Jun- ichi, Minseok KIM
13	TD(16)01014	Testing OpenWSN and Contiki OSs Performances on OpenMote Platform	Gordana Gardašević, Dragan Vasiljević, Mladen Veletić
14	TD(16)01015	Investigating the angular dependence of diffuse scattering correlation	Yang Miao, Quentin Gueuning, Claude Oestges
15	TD(16)01016	Measuring and Modelling of Specular Reflections at mm-Wave Frequencies	Angelos A. Goulianos

16	TD(16)01017	Physical-Statistical Modeling of Dynamic Indoor Power Delay Profiles	Evgenii Vinogradov, Aliou Bamba, Wout Joseph, Claude Oestges
17	TD(16)01018	Analysis of Deployment Options to Enhance Horizontal Information Sharing and Networking in Internet of Things	Andrej Mihailovic, Marko Simeunovic, Milica Pejanovic- Djurisic
18	TD(16)01019	An Extension of the RiMAX Algorithm for Ultra-Wideband Channels	Brecht Hanssens, Emmeric Tanghe, Davy P. Gaillot, Martine Liénard, Claude Oestges, David Plets, Luc Martens, Wout Joseph
19	TD(16)01020	Spectrum sharing in DTT band for IoT Services provission	Kevin Llamas, Gerardo Martínez, Narcis Cardona
20	TD(16)01021	Virtual multi-antenna array for estimating the angle-of-arrival of a RF transmitter	Francois Quitin, Vivek Govindaraj, Xionghu Zhong and Wee Peng Tay
21	TD(16)01022	On stochastically emulating continuous scattering structures by discrete sources for OTA testing of DuT with highly directive antennas	Wim Kotterman, Markus Landmann, and Giovanni del Galdo
22	TD(16)01023	A Medical Cloud	Jurij Tasic, Marjan Gusev, Sasko Ristov
23	TD(16)01024	Effects of Hyper-Dense Small-Cell Network Deployments on a Realistic Urban Environment	Dennis M. Rose, Thomas Kürner
24	TD(16)01025	A Data Traffic Steering Algorithm for IEEE 802.11p/LTE Hybrid Vehicular Networks	Nils Dreyer, Andreas Möller, Zeeshan Hameed Mir, Fethi Filali, Thomas Kürner
25	TD(16)01026	Spectrum sharing in 5G networks: the Italian first world's Licensed Shared Access pilot in the 2.3-2.4 GHz band	Doriana Guiducci, Claudia Carciofi, Valeria Petrini, Eva Spina, Pravir Chawdhry
26	TD(16)01027	EMF exposure assessment in a real femtocell environment under 5G paradigm	Doriana Guiducci, Claudia Carciofi, Simona Valbonesi, Valeria Petrini, Marina Barbiroli, Eva Spina, Pravir Chawdhry
27	TD(16)01028	Waveform Design Principles and Comparison of New Generation Waveform Candidates for 5G and Beyond	Berker Pek• oz, Ahmet Yazar, and H• useyin Arslan
28	TD(16)01029	LTE-ADVANCED RADIO AND NETWORK OPTIMIZATION: BASIC COVERAGE AND INTERFERENCE CONSTRAINTS	Fernando J. Velez, Sofia Sousa, Jessica Acevedo Flores, Daniel Robalo, Albena Mihovska, Ramjee Prasad
29	TD(16)01030	BASIC LIMITS FOR LTE-ADVANCED RADIO AND HETNET OPTIMIZATION IN THE OUTDOOR-TO-INDOOR SCENARIO	Fernando J. Velez, Sofia Sousa, Albena Mihovska, Ramjee Prasad
30	TD(16)01031	Impact of Transmitter Power in Packet Schedulers Performance in LTE HetNets	Rui R. Paulo, Fernando J. Velez, Giuseppe Piro
31	TD(16)01032	Experimental Characterization of WSNs Applied to Swarms of Aquatic Surface Drones	Fernando J. Velez, Aleksandra Nadziejko, Anders Lyhne Christensen, Sancho

			Oliveira, Tiago Rodrigues, Vasco Costa, Miguel Duarte, Fernando Silva, Jorge Gomes
32	TD(16)01033	Generality of Map–Based Model	Aki Hekkala, Pekka Kyösti
33	TD(16)01034	MIMO Channel Reconstruction from Lower Dimensional Multiple Antenna Measurements	Rimvydas Aleksiejunas
34	TD(16)01035	Joint Routing and Scheduling for Centralised Wireless Sensor Networks	Chiara Buratti, Roberto Verdone
35	TD(16)01036	Performance Evaluation of LoRa Technology: Experimentation and Simulation	Luca Feltrin, Stefan Mijovic, Chiara Buratti, Andrea Stajkic, Enrico Vinciarelli, Roberto Verdone, Roberto De Bonis
36	TD(16)01037	EuWin@UniBo: Experimental Facilities for the Internet of Things	Chiara Buratti, Roberto Verdone
37	TD(16)01038	Analysis of in-Room mm-Wave Propagation: Ray Tracing Simulations and Directional Channel Measurements.	F. Fuschini, S. Häfner, M. Zoli, R. Müller, E. M. Vitucci, D. Dupleich, M. Barbiroli, J. Luo, E. Schulz, V. Degli- Esposti and R. S. Thomä.
38	TD(16)01039	Three Dimensional (3D) Beamforming: An Application Example with Satellite- Terrestrial Spectral Coexistence Scenario	Shree Krishna Sharma, Symeon Chatzinotas, Joel Grotz and Björn Ottersten
39	TD(16)01040	A Measurement Based Multilink Shadowing Model for V2V Network Simulations of Highway Scenarios	Mikael Nilsson with mail mikael.nilsson@volvocars.co m
40	TD(16)01041	A Semi-deterministic Method for Predicting Indoor Cellular Coverage in Dense Urban Areas	V. Degli-Esposti, J. S. Lu, J. N. Wu, J. J. Zhu, J. A. Blaha, E. M. Vitucci, F.Fuschini, M. Barbiroli
41	TD(16)01042	Overview of the COST IC1004 white paper on 'Channel measurement and modelling for 5G networks in the frequency bands above 6 GHz'	S. Salous
42	TD(16)01043	On Dimensions of OTA set-up for Base stations Radiated Testing	Pekka Kyösti, Wei Fan, Anders Karstensen
43	TD(16)01044	Measurement Results and Simulation Based Channel Characterization For Outdoor Open Area Access Scenarios at 58.5 GHz	Minseok Kim, Tatsuki Iwata, Kento Umeki, Karma Wangchuk, Takada Jun-ichi, Shigenobu Sasaki
44	TD(16)01045	Analysis of Outdoor Small-cell Path-loss and Propagation Channel from Ray- based Simulations in Sub-6GHz and mmWave Bands	Yoann Corre, Thierry Tenoux, Julien Stéphan, Florian Letourneux, Romain Charbonnier, Yves Lostanlen
45	TD(16)01046	OTA testing challenges at mmWave frequeincies	Moray Rumney
46	TD(16)01047	Indoor Highly Resolved Channel Measurements at 60 GHz	Jonas Medbo, Henrik Asplund, Niklas Jaldén
47	TD(16)01049	An Advanced Graph-based Ray Tracing Method for Radio Propagation Modelling and Localization	Nicolas Amiot,Mohamed Laaraiedh, Bernard Uguen

48	TD(16)01050	Experimental validation of a wake-up radio architecture	Florin HUTU, David KIBLOFF, Guillaume VILLEMAUD and Jean-Marie GORCE
49	TD(16)01051	A parallel unbalanced digitization architecture to reduce the dynamic range of multiple signals	Mathieu Vallérian, Florin Hutu, Guillaume Villemaud, Benoit Miscopein and Tanguy Risset
50	TD(16)01052	Experimental evaluation of interference impact on the energy consumption in wireless sensor networks	Viktor Toldov, Laurent Clavier, Nicolas de Araujo Moreira
51	TD(16)01053	Attainable Capacity of Spatial Radio Channels: A Multiple-Frequency Analysis	Katsuyuki Haneda, Sinh Le Hong Nguyen and Afroza Khatun
52	TD(16)01054	Passive Millimeter-Wave RFID using Backscattered Signals	Francesco Guidi and Raffaele D'Errico
53	TD(16)01055	A Unified Generic Multicarrier Modulation Framework	Konstantinos Maliatsos, Eleftherios Kofidis, Athanasios Kanatas
54	TD(16)01057	Accurate and Robust Positioning for 5G Systems: Bandwidth Scaling and Diversity Gain in Dense Multipath	Klaus Witrisal, Erik Leitinger, Stefan Hinteregger, Josef Kulmer, Paul Meissner, Katsuyuki Haneda, Carl Gustafson, and Fredrik Tufvesson
55	TD(16)01058	Research activities at WiComTec-UPC research group	Sílvia Ruiz, Mario Garcia_Lozano, David Perez, José Luis Valenzuela, Joan Olmos and Lluis Alonso
56	TD(16)01059	On frequency dependence of large scale channel parameters	Henrik Asplund, Jonas Medbo, Niklas Jaldén
57	TD(16)01060	Specular Reflection Formulation for Point Cloud Modelling	Jean-Frederic Wagen, Usman Tahir Virk, Katsuyuki Haneda
58	TD(16)01062	Indoor Channel Characterization in the E-band	Aliou Bamba, Francesco Mani, Raffaele D'Errico
59	TD(16)01063	MU-MIMO Performances Analysis from Aggregated Measurement Channel in Indoor Environment.	Mamadou Dialounke Baldé, Bernard Uguen
60	TD(16)01064	Study of Dominant Path Probability Models for 5G 3GPP Channel Model	Gerhard Steinböck, Tommi Jämsä, Mattias Gustafsson
61	TD(16)01065	Performance evaluation of massive- MIMO systems in fading-emulator based setup	W. Fan, I. Carton, P. Kyösti, T. Jämsä, M. Gustafsson, G. F. Pedersen
62	TD(16)01066	3GPP 3D Channel Model for 5G	Tommi Jämsä, Gerhard Steinböck
63	TD(16)01067	Wireless Network Design with Dynamic Interference	Malcolm Egan, Mauro de Freitas, Laurent Clavier, Alban Goupil, Gareth W. Peters and Nourddine Azzaoui
64	TD(16)01068	Millimeter-wave Channel Modeling Using Graph theory Based on Digital Maps	Li Tian, Vittorio Degli-Esposti, Enrico M. Vitucci, Xuefeng Yin

		An Efficient Ray-Tracing Method Based	
65	TD(16)01070	on Image Visibility Mapping for Propagation Prediction in Urban Environments	Sajjad Hussain and Conor Brennan
66	TD(16)01072	Time Correlation in Mobile to Mobile Indoor Channels	Gloria Makhoul, Francesco Mani, Raffaele D'Errico, Claude Oestges
67	TD(16)01073	On the Duality Between State- Dependent Channels and Wiretap Channels	David Kibloff, Samir M. Perlaza, Guillaume Villemaud, Leonardo S. Cardoso
68	TD(16)01074	Substitutability of Spectrum and Cloud- based Antennas in Virtualised Wireless Networks	Hamed Ahmadi, Irene Macaluso, Ismael Gomez, Linda Doyle, Luiz DaSilva
69	TD(16)01075	S. Fortes, A. Aguilar-García, J.A. Fernández-Luque, A. Garrido-Martín, R. Barco	Location-Based User Equipment Identification of Failures in Femtocell Networks
70	TD(16)01076	Experimental Characterization and multipath clustering modelling for 13-17 GHz Indoor Propagation Channels	Cen Ling, Xuefeng Yin, Haowen Wang, Xiaomei Zhang, and Reiner S. Thomä
71	TD(16)01077	Sensor Selection and Power Allocation Strategies in Energy Harvesting Frameworks	Miguel Calvo-Fullana, Javier Matamoros and Carles Antón- Haro
72	TD(16)01078	Millimeter-wave Channel Prediction Using Point Cloud Data	Jan Järveläinen, Katsuyuki Haneda, Aki Karttunen
73	TD(16)01079	A study on the performance of Over- Roof-Top propagation models in dense urban environment	E. M. Vitucci, F. Fuschini, M. Barbiroli, M. Zoli, V. Degli- Esposti
74	TD(16)01080	An Empirical Random-Cluster Model for Subway Channels Based on Passive Measurements in UMTS	Xuesong Cai, Xuefeng Yin, Xiang Cheng, and Antonio Perez Yuste
75	TD(16)01081	Measurement-based estimation of material permittivity at millimetre wave frequencies	Thomas H. Barratt, Angelos A. Goulianos, Alberto Loaiza Freire, Thomas M. Stone, Evangelos Mellios, Peter Cain, Andrew R. Nix & Mark A. Beach
76	TD(16)01082	Dynamic Performance of Electrical Balance Duplexing in a Vehicular Scenario	Leo Laughlin, Chunqing Zhang, Mark A. Beach, Kevin A. Morris, John L. Haine
77	TD(16)01083	Distributed defective node detection in Delay Tolerant Networks	W. Li, F. Bassi, A. Callisti, D. Dardari, L. Galluccio, M. Kieffer, and G. Pasolini
78	TD(16)01084	Preliminary Investigation of Uplink Power Control for Massive MIMO	Wael Boukley Hasan, Paul Harris, Angela Doufexi and Mark Beach
79	TD(16)01085	Real-Time Measurements with a 128- Antenna Massive MIMO Testbed	Paul Harris, Siming Zhang, Mark Beach, Evangelos Mellios, Andrew Nix, Simon Armour, Angela Doufexi
80	TD(16)02001	Emergency Ad-Hoc Networks by Using Drone Mounted Base Stations for a Disaster Scenario	Margot Deruyck, Jorg Wyckmans, Luc Martens, Wout Joseph

97	TD(16)02018	MIMO Gain and Bandwidth Scaling for RFID Positioning in Dense Multipath Channels	Stefan Hinteregger, Erik Leitinger, Paul Meissner, and Klaus Witrisal
96	TD(16)02017	Bandwidth Dependence of the Ranging Error Variance in Dense Multipath	Stefan Hinteregger, Erik Leitinger, Paul Meissner, Josef Kulmer, and Klaus Witrisal
95	TD(16)02016	On the Use of Serious Game Engineering for 5G System Performance Evaluation	Carlos Herranz, David Martín- Sacristán, Saúl Inca, Jose F. Monserrat, Narcís Cardona
94	TD(16)02015	Massive MIMO Propagation Models	Henry Brice, Mark Beach, Evangelos Mellios
93	TD(16)02014	Dense Multipath Component Characteristics in 11GHz-band Indoor Environments	Kentaro Saito, Jun-ichi Takada, Minseok Kim
92	TD(16)02013	The Delay, Angular and Polarization Characteristics of Geometry-based Clusters in an Indoor Environment at 11 GHz Band	Panawit Hanpinitsak, Kentaro Saito, Junichi Takada, Minseok Kim, Lawrence Materum
91	TD(16)02012	A Model for Virtual Radio Resource Management in C-RAN	Behnam Rouzbehani, Luís M. Correia, Luísa Caeiro
90	TD(16)02011	Using the iMinds w-iLab.t testbed for IoT experiments	Margot Deruyck, Wout Joseph
89	TD(16)02010	Geometry-Based Polarised Static Off- Body Channel Model	Kenan Turbic, Luis M. Correia, Marko Beko
88	TD(16)02009	Tailor-Made Tissue Phantoms Based on Acetonitrile Solutions for Microwave Applications up to 18 GHz	Sergio Castelló-Palacios, Concepcion Garcia-Pardo, Alejandro Fornes-Leal, Narcís Cardona, and Ana Vallés- Lluch
87	TD(16)02008	Virtualization of Spatial Streams for Enhanced Spectrum Sharing	Hamed Ahmadi, Irene Macalusoy, Ismael Gomezy, Luiz DaSilvay, Linda Doyle
86	TD(16)02007	Practical Interference-Aware R-ML SIC Receiver for LTE SU-MIMO Spatial Multiplexing	Elena LUKASHOVA, Florian KALTENBERGER, Raymond KNOPP
85	TD(16)02006	Base Station Over-the-Air Testing in Reverberation Chamber	Christian Patané Lötbäck, Klas Arvidsson, Mats Högberg, Mattias Gustafsson
84	TD(16)02005	Wide Band Propagation in Train-to-Train Scenarios - Measurement Campaign and First Results	Paul Unterhuber, Stephan Sand, Mohammad Soliman, Benjamin Siebler, Andreas Lehner, Thomas Strang
83	TD(16)02004	Long term measurements over fixed links in the mm wave band	A. Cheema, S. Salous, X. Raimundo, Y. Cao
82	TD(16)02003	LTE Delay Assessment for Real-Time Management of Future Smart Grids	Ljupco Jorguseski, Haibin Zhang, Sylvie Dijkstra- Soudarissanane, Michal Golinski
81	TD(16)02002	Characteristics of the Polarised Off-Body Channel in Indoor Environments	Kenan Turbic, Slawomir J. Ambroziak, Luis M. Correia

98	TD(16)02019	Consideration of directivity of antennas for high frequency wireless body area networks during human movements	Takahiro Aoyagi
99	TD(16)02020	Distributed Consensus Estimator of Hierarchical Network Transfer Function in WPNC Networks	Jan Sykora
100	TD(16)02022	Joint channel and carrier frequency offset estimation for UFMC	Eric Simon and Florian Kaltenberger
101	TD(16)02023	The Capacity of Cloud-RAN: Outer bound with Quantisation and Constrained Fronthaul Load	Qinhui Huang and Alister Burr
102	TD(16)02024	Iterative interference cancellation for FBMC and reduced-CP OFDM	Yahya Harbi and Alister Burr
103	TD(16)02026	Validation of SCME wave fields	Moray Rumney, Ya Jing, Sergio Cobos, Manuel Salmeron
104	TD(16)02028	Building testability into mmWave 5G	Moray Rumney
105	TD(16)02029	A Study of the Energy Detection Threshold in the IEEE 802.15.6 CSMA/CA	Martina Barbi, Kamran Sayrafian, Mehdi Alasti
106	TD(16)02030	SER analysis of QPSK modulated Physical Layer Network Coding for system-level simulation	Cheng Chen and Alister Burr
107	TD(16)02031	Massive MIMO Mobility Measurements in LOS with Power Control	Paul Harris, Wael Boukley Hasan, Henry Brice, Mark Beach, Evangelos Mellios, Andrew Nix, Simon Armour, Angela Doufexi
108	TD(16)02032	Ground-to-X polarimetric radio channel characterization in forest scenarios	Pierre Laly, Rose Mazari, Guy Grunfelder, Davy P. Gaillot, Shiqi Cheng, Jean-Marie Floch, Martine Liénard, Pierre Degauque, Emmeric Tanghe, Wout Joseph
109	TD(16)02033	Non-linear PNC mapping for hierarchical wireless network	Alister Burr
110	TD(16)02034	Characterization and Modeling of the MIMO Radio channel in the W-band	Davy P. Gaillot, Maria-Teresa Martinez-Ingles, Juan Pascual-Garcia, Martine Lienard, José-Víctor Rodríguez, and Jose-Maria Molina-Garcia-Pardo
111	TD(16)02035	Frequency Dependency of Measured Highly Resolved Directional Propagation Channel Characteristics	Jonas Medbo, Nima Seifi, Henrik Asplund, Fredrik Harrysson
112	TD(16)02036	Experimental Ultra Wideband Path Loss Models for Implant Communications	C. Garcia-Pardo, R. Chávez- Santiago, A. Fornes-Lea), S. Castelló-Palacios, A. Vallés- Lluch, C. Andreu, I. Balasingham and N. Cardona
113	TD(16)02037	How to optimally tune sparse network coding over wireless links	Pablo Garrido, Ramón Agüero

114	TD(16)02038	Electrical Balance Duplexer performance in a High Speed Rail Applications	Leo Laughlin, Chunqing Zhang, Mark Beach, Kevin Morris, John Haine
115	TD(16)02039	CHANNEL PROPAGATION EXPERIMENTAL MEASUREMENTS AND SIMULATIONS AT 52 GHz	B. Montenegro-Villacieros, J. Bishop, S. Salous, X. Raimundo
116	TD(16)02040	Envisioning Spectrum Management In Virtualised C-RAN	Imad Al-Samman, Matteo Artuso, Henrik Christiansen, Angela Doufexi, Mark Beach
117	TD(16)02041	Impulsive noises and dependence - preliminary considerations	Emilie Soret, Laurent Clavier, Gareth Peters
118	TD(16)02042	Peer-Assisted Individual Assessment in a Multi-Agent System	Li Wenjie, Francesca Bassi, Laura Galluccio, and Michel Kieffer
119	TD(16)02043	Ground reflection modelling in millimeter wave channels	Shangbin Wu, Stephan Jaeckel, Fabian Undi
120	TD(16)02044	OpenAirInterface Massive MIMO Testbe d: A 5G Innovation Platform	Florian Kaltenberger, Xiwen Jiang
121	TD(16)02045	A miniaturized pattern reconfigurable antenna for automotive applications	Jerzy Kowalewski, Tobias Mahler, Jonathan Mayer, Thomas Zwick
122	TD(16)02046	Double-directional Dual-polarimetric Ultra-wideband Cluster-based Characterization of 70-77 GHz Indoor Propagation Channels	Cen Ling, Xuefeng Yin, Robert Müller, Stephan Häfner, Diego Dupleich, Christian Schneider, Jian Luo, Hua Yan and Reiner S. Thomä
123	TD(16)02048	Hybrid self-interference cancellation for small form factor realization of in-band full duplex	Chunqing Zhang, Leo Laughlin, Mark A. Beach, Kevin A. Morris, and John Haine
124	TD(16)02049	Presenting the VISTA (Virtual Road) experimental facility for automotive research of TU Ilmenau	F. Wollenschläger, W. Kotterman, C. Bornkessel, G. Del Galdo, R. Thomä, M. Hein
125	TD(16)02050	Network Function Virtualization of Software-Defined Internet of Things	Chiara Buratti, Franco Callegati, Simone Cerboni, Walter Cerroni, Slavica Tomovic, Roberto Verdone
126	TD(16)02051	The Over-the-Air facilities at Fraunhofer's FORTE	W. Kotterman, M. Landmann, F. Raschke, M. Hein, R. Thomä, and G. Del Galdo
127	TD(16)02056	Reproducing Standard SCME Channel Models for Massive MIMO Base Station Radiated Testing	Wei Fan, Fengchun Zhang, Tommi Jämsä, Mattias Gustafsson, Pekka Kyösti and Gert F. Pedersen
128	TD(16)02057	GNSS-SDR: An open source software- defined GNSS receiver	Carles Fernandez-Prades
129	TD(16)02058	Device-To-Device graph-oriented Resource Allocation in LTE Uplink using SC-FDMA	Johannes Baumgarten and Thomas Kürner
130	TD(17)03001	Metallic Coupling Frame-based HF RFID Cards	Shrief Rizkalla, Ralph Prestros, Christoph F. Mecklenbräuker

r	ſ	1	
131	TD(17)03002	Pattern Reconfigurable Antenna With Four Directions Hidden in the Vehicle Roof	Gerald Artner, Jerzy Kowalewski, Christoph F. Mecklenbräuker, Thomas Zwick
132	TD(17)03003	Communications for Public Protection and Disaster Relief: Overview and Vision Toward the Future	Pedro Alvito Silva and Fernando José Velez
133	TD(17)03004	High Performance Cloud Ray-Tracing Simulator and Its Application to High Speed Train Communications	Danping He, Ke Guan, Longhe Wang, Bo Ai, Zhangdui Zhong
134	TD(17)03005	Millimeter-Wave Outdoor-to-Indoor Channel Measurements at 3, 10, 17 and 60 GHz	Cheikh A. L. Diakhate, Jean- Marc Conrat, Jean-Christophe Cousin, Alain Sibille
135	TD(17)03006	An Approach to Mean Path Loss Model Estimation for Off-Body Channels	Kenan Turbic, Slawomir J. Ambroziak, Luis M. Correia
136	TD(17)03007	Optimal Aggregation Throughput is Nearly Constant	Magnus M. Halldorsson and Tigran Tonoyan
137	TD(17)03008	SegHyPer: Segmentation- and Hypothesis based Network Performance Evaluation for High Speed Train Users	Taulant Berisha, Philipp Svoboda, Stephan Ojak, and Christoph F. Mecklenbräuker
138	TD(17)03009	Real-time Localization of a Moving Target Using Hybrid RSS and AoA Measurements	Slavisa Tomic, Marko Beko, and Rui Dinis
139	TD(17)03010	Joint beamforming and network topology optimization of green cloud radio access networks	Alaa Alameer and Aydin Sezgin
140	TD(17)03011	Gilbert-Elliot Performance Modeling of Vehicular-to-Vehicular Packet Transmissions	Thomas Blazek, Christoph F. Mecklenbräuker
141	TD(17)03012	Experimental Analysis of Aligment Impact in Short Communications at 300 GHz	María-Teresa Martínez- Inglés, Davy P. Gaillot, Jose- Maria Molina-Garcia-Pardo, José-Víctor Rodríguez, Juan Pascual-García, Leandro Juan-Llácer and Martine Lienard
142	TD(17)03013	A synchronization-free method for estimating TDOA: technique and proof- of-concept	Franc ois Quitin, Franc ois Horlin, Philippe De Doncker
143	TD(17)03014	Performance Comparison of Uplink and Downlink Techniques under DUDe Strategy for Heterogeneous Networks	Hui Wang, Mario Garcia- Lozano, Edward Mutafungwa, Xuefeng Yin and Silvia Ruiz
144	TD(17)03015	Assessing Measurement Distances for OTA Testing of Massive MIMO Base Station at 28 GHz	Pekka Kyösti, Wei Fan, Jukka Kyröläinen
145	TD(17)03016	Real-Time Channel Emulation of a Geometry-Based Stochastic Channel Model on a SDR Platform	Markus Hofer, Zhinan Xu, Thomas Zemen
146	TD(17)03018	Accurate Broadband Measurement of Electromagnetic Tissue Phantoms Using Open-Ended Coaxial Systems	Alejandro Fornes-Leal, Concepcion Garcia-Pardo, Narcís Cardona, Sergio Castelló-Palacios, Ana Vallés- Lluch

1		
TD(17)03019	Stochastic Geometry Based Coverage Estimation Using Realistic Urban Shadowing Models	Charles Wiame, Luc Vandendorpe and Claude Oestges
TD(17)03020	RAN Multihoming and Load-balancing for IoT using LISP	Titus BALAN, Marian ALEXANDRU, Florin SANDU, Dan ROBU
TD(17)03021	PDOA Emitter Location Using Game Engines 3D Ray based Tools	Andres Navarro, William Cruz
TD(17)03022	Experimental Characterization of Joint Scheduling and Routing Algorithm over 6TiSCH	Gordana Gardašević, Dragan Vasiljević, Chiara Buratti, Roberto Verdone
TD(17)03023	Monitoring Platform for Patients with Movement Disorders	Lazar Berbakov, Bogdan Pavković, Marina Svetel
TD(17)03024	Spreading the Traffic Load in Emergency Ad-Hoc Networks deployed by Drone Mounted Base Stations	Margot Deruyck, Jorg Wyckmans, David Plets, Luc Martens, Wout Joseph
TD(17)03025	Spatial In-Body to On-Body Channel Characterization Using an Accurate UWB Phantom	Carlos Andreu, Sergio Castelló-Palacios, Concepcion Garcia-Pardo, Alejandro Fornes-Leal, Ana Vallés-Lluch and Narcís Cardona
TD(17)03026	Transfer Matrix of Ray Tracing Simulated MIMO Radio Channel	Radovan Zentner, Nikola Mataga, Ana Katalinić Mucalo
TD(17)03027	CASTLE: A user-friendly platform to test, evaluate and develop contemporary wireless communication standards	Pol Henarejos, Alexis Dowhuszko, and Ana Pérez- Neira
TD(17)03028	Impact of considering the ITU-R Two Slope Propagation Model in the System Capacity Trade-off for LTE-A HetNets with Small cells	Sofia C. Sousa, Fernando J. Velez, Jon Peha
TD(17)03029	Impact of Frequency-Hopping NB-IoT Positioning in 4G and Future 5G Networks	José A. del Peral-Rosado, José A. López-Salcedo, and Gonzalo Seco-Granados
TD(17)03030	Routing based on FRET for in-body nanonetworks	Pawel Kulakowski, Kamil Solarczyk, Krzysztof Wojcik
TD(17)03031	Comparison of 5G candidate multi- carrier waveforms in a hardware testbed	Kun Chen Hu, Giacomo Pera and Ana Garcia Armada
TD(17)03032	Fading Modelling in Maritime Container Terminal Environments	Manuel M. Ferreira, Slawomir J. Ambroziak, Filipe D. Cardoso, Jaroslaw Sadowski and Luís M. Correia
TD(17)03033	Update on Electrical Balance Duplexer Performance in High Speed Rail Applications	Leo Laughlin, Chunqing Zhang, Mark Beach, Kevin Morris, John Haine
TD(17)03034	Channel Modeling for Outdoor LoS and NLoS Environments	Jiajing Chen, Xuefeng Yin, Xuesong Cai, and Stephen Wang
TD(17)03035	Blockage modelling for evaluation of a 60 GHz Dense Small-Cell Network Performance	Mohammed Zahid Aslam, Romain Charbonnier, Yoann Corre, Yves Lostanlen
	TD(17)03020 TD(17)03021 TD(17)03022 TD(17)03023 TD(17)03024 TD(17)03025 TD(17)03026 TD(17)03027 TD(17)03028 TD(17)03029 TD(17)03031 TD(17)03032 TD(17)03033 TD(17)03034	Shadowing ModelsTD(17)03020RAN Multihoming and Load-balancing for IoT using LISPTD(17)03021PDOA Emitter Location Using Game Engines 3D Ray based ToolsTD(17)03022Experimental Characterization of Joint Scheduling and Routing Algorithm over 6TiSCHTD(17)03023Internet of Things based Remote Monitoring Platform for Patients with Movement DisordersTD(17)03024Spreading the Traffic Load in Emergency Ad-Hoc Networks deployed by Drone Mounted Base StationsTD(17)03025Spatial In-Body to On-Body Channel Characterization Using an Accurate UWB PhantomTD(17)03026Transfer Matrix of Ray Tracing Simulated MIMO Radio Channel CASTLE: A user-friendly platform to test, evaluate and develop contemporary wireless communication standardsTD(17)03028Impact of considering the ITU-R Two Slope Propagation Model in the System Capacity Trade-off for LTE-A HetNets with Small cellsTD(17)03030Routing based on FRET for in-body nanonetworksTD(17)03031Comparison of 5G candidate multi- carrier waveforms in a hardware testbedTD(17)03032Fading Modelling in Maritime Container Terminal EnvironmentsTD(17)03034Measurement-based Massive MIMO Channel Modeling for Outdoor LoS and NLoS EnvironmentsTD(17)03034Measurement-based Massive MIMO Channel Modeling for evaluation of a 60 GHz Dense Small-Cell Network

		Indeer Drepension Medalling using the	
164	TD(17)03036	Indoor Propagation Modelling using the Volume Integral Equation	I. Kavanagh and C. Brennan
165	TD(17)03037	A Modified Proportional Fair Radio Resource Management Scheme in Virtual RAN	Behnam Rouzbehani, Luís M. Correia, Luísa Caeiro
166	TD(17)03038	System Level Evaluation of Dynamic Base Station Clustering for Coordinated Multi-Point in Future Cellular Networks	Sebastian Scholz
167	TD(17)03039	Sharing analysis in a live LTE network in the 2.3-2.4 GHz band: regulatory compliance and technical results	Doriana Guiducci, Claudia Carciofi, Valeria Petrini, Sergio Pompei, Heikki Kokkinen, Eva Spina, Giuseppe De Sipio, Domenico Massimi, Domenico Spoto, Fabrizio Amerighi, Tommaso Magliocca, Luigi Ardito, Pierre-Jean Muller, Pravir Chawdhry, Massimiliano Gianesin, Seppo Yrjola, Vesa Hartikainen, Lucia Tudose, Fausto Grazioli, Donatella Caggiati, Jesus L. Santos, Vicent F. Guasch, Jose Costa-Requena
168	TD(17)03040	LOG-a-TEC testbed current state and future plans	Tomaž Javornik, Igor Ozimek, Andrej Hrovat, Tomaž Šolc, Adnan Bekan, Carolina Fortuna, Matevž Vučnik, Klemen Bregar, Miha Smolnikar, Mihael Mohorčič, Adnan Bekan
169	TD(17)03041	Ray-Tracer Based Channel Characteristics for Distributed Massive MIMO	David Löschenbrand, Markus Hofer, Thomas Zemen
170	TD(17)03042	Dynamic Resource Partitioning between Massive Broadband and Machine Type Communication in 5G Networks	Kristian Ulshöfer, Sebastian Scholz
171	TD(17)03043	Temporal Analysis of Measured LOS Massive MIMO Channels with Mobility	Paul Harris, Steffen Malkowsky, Joao Vieira, Fredrik Tufvesson, Wael Boukley Hasan , Liang Liu, Mark Beach , Simon Armour and Ove Edfors
172	TD(17)03044	Influence of user's motion on signal depolarisation in off-body channel	Kenan Turbic, Luis M. Correia, Marko Beko
173	TD(17)03045	Analysis of Experimental Results related to the introduction of LTE in 2300-2400 MHz band in response to the European Commission	Doriana Guiducci, Claudia Carciofi, Claudio Cecchetti, Elio Restuccia, Gianmarco Fusco
174	TD(17)03046	Multi-path Components Fluctuation Analysis for 28 GHz Outdoor Radio Channel Measurement Based on Mobile Scenario	Mamadou Dialounké Balde, Katsuyuki Haneda, Bernard Uguen

175	TD(17)03047	Link Performance Evaluation and Channel Propagation for mmWave Systems	Vaia Kalokidou, Angelos A. Goulianos, Alberto Loaiza Freire, Peter Legg, Timothy Pelham, Andy Lunness, Mark A. Beach, Andrew Nix
176	TD(17)03048	User Weighted Probability Algorithm for Heterogeneous C-RAN Interference Mitigation	Imad Al-Samman, Reham Almesaeed, Angela Doufexi, Mark Beach, Andrew Nix
177	TD(17)03049	Synthesis of Realistic Bistatic Range Profiles	Gerd Sommerkorn, Stephan Häfner, Matthias Röding and Reiner Thomä
178	TD(17)03050	Achievable Rates and Applications of a Textile Massive MIMO Hub	Estefanía Crespo Bardera, Ana García Armada and Matilde Sánchez Fernández
179	TD(17)03051	Current Trends on IoT Computing and Protocol Architectures: Scenarios and Communications Issues	Luis Orozco Barbosa and Manuel Castillo-Cara
180	TD(17)03052	Above 6 GHz Multipath Cross- Polarization Ratio in Indoor and Outdoor Scenarios	Aki Karttunen, Jan Järveläinen, Sinh Le Hong Nguyen, and Katsuyuki Haneda
181	TD(17)03053	Joint Routing and Scheduling with the Backpressure Algorithm and Energy Harvesting Constraints	Miguel Calvo-Fullana, Javier Matamoros, Carles Anton- Haro, Alejandro Ribeiro
182	TD(17)03054	Antenna Systems for Wireless Capsule Endoscope: Design, Analysis and Experimental Validation	Miah Md Suzan, Ahsan Noor Khan, Clemens Icheln and Katsuyuki Haneda
183	TD(17)03055	Mm-wave Indoor Channel Cluster Analysis by Multipath Component Extraction from Directional Antenna Scanning	Minseok Kim, Tatsuki Iwata, Kento Umeki, Jun-ichi Takada, and Shigenobu Sasaki
184	TD(17)03056	Modeling the Power Angular Profile of Dense Multipath Components using Multiple Clusters	Brecht Hanssens, Kentaro Saito, Emmeric Tanghe, Wout Joseph and Jun-ichi Takada
185	TD(17)03057	A Linear Downlink Power Control Algorithm for Cellular Networks	Yisroel Mirsky, Yoram Haddad
186	TD(17)03058	Simulation Study of the Polarization Behavior for a WTTx Scenario at 28 GHz	Gerhard Steinböck, Martin Alm, Tommi Jämsä, and Mattias Gustafsson
187	TD(17)03059	NFFT-based inhomogeneous plane- wave physical optics dedicated to radio- channel estimation in urban environment	Quentin Gueuning, Christophe Craeye, and Claude Oestges
188	TD(17)03060	MIMO-FBMC/OQAM using IIC and MIMO-IIC in LTE channel	Yahya Harbi, Alister Burr
189	TD(17)03061	Compute-and-Forward in Cell-Free Massive MIMO: Great Performance with Low Backhaul Load	Qinhui Huang, Alister Burr
190	TD(17)03062	BER performance of convolutionally coded BPSK layered hierarchical decode and forward relaying	Alister Burr, Cheng Chen
191	TD(17)03064	Mm-wave Indoor Channel Characterization in V and E Bands	Aliou Bamba, Francesco Mani, Raffaele D'Errico

192	TD(17)03065	Experimental evaluation of relative calibration in a MISO-TDD system	Theoni Magounaki, Florian Kaltenberger, Xiwen Jiang, Cyril Buey, Philippe Ratajczak, Fabien Ferrero
193	TD(17)03066	Low-cost or compost? Using DecaWave UWB Transceivers for High-accuracy Multipath-assisted Indoor Positioning	Josef Kulmer, Stefan Hinteregger, Bernhard Großwindhager, Michael Rath, Mustafa S. Bakr, Erik Leitinger, Klaus Witrisal
194	TD(17)03067	Dominant Eigenmode Gains of Millimeter-Wave Antenna Arrays on a Mobile Phone	Katsuyuki Haneda, Mikko Heino and Jan Jarvelainen
195	TD(17)03068	UAV-aided B5G Networks	Silvia Mignardi, Roberto Verdone
196	TD(17)03069	User Grouping for Massive MIMO in TDD	Wael Boukley Hasan, Paul Harris, Angela Doufexi and Mark Beach
197	TD(17)03070	Scenario Modules and Ray-Tracing Simulations of Millimeter Wave and Terahertz Channels for Smart Rail Mobility	Ke Guan, Xue Lin, Danping He, Bo Ai, Zhangdui Zhong, Zhuyan Zhao, Deshan Miao, Hao Guan, Thomas Kuerner
198	TD(17)03071	An Energy-Efficient Routing Protocol for WSNs Combining Source Routing and Minimum Cost Forwarding	Fardin Derogarian, Joao Canas Ferreira, Vitor M. Grade Tavares, Fernando J. Velez
199	TD(17)03072	MARC: Multiple Access Radio Controller A Convex Optimization Approach to 5G Multi-connectivity	Luis Diez, Andrés García- Saavedra, Victor Valls, Xi Li, Xavier Costa-Perez, Ramón Agüero
200	TD(17)03073	Implementation Analysis of Cloud Radio Access Network Architectures in Small Cells	Tiago Monteiro, Luis M. Correia, Ricardo Dinis
201	TD(17)03074	Design of C-RAN Fronthaul for Existing LTENetworks	Hugo da Silva, Luis M. Correia, Pompeu Costa
202	TD(17)03075	Balancing the Load in LTE Urban Networks via Inter-Frequency Handovers	José Guita, Luis M. Correia, Marco Serrazina
203	TD(17)03076	Urban and O2I loss measurements at 28 GHz	Richard Rudd
204	TD(17)03077	Experimenting Cognitive Radio Communication with GNU Radio on CorteXlab	Tanguy Risset, Leonardo Cardoso, Jean-Marie Gorce, Guillaume Villemaud, Matthieu Imbert, Florin Hutu Abdelbassat Massouri, Othmane Oubejja, Olivier Nicolas