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Abstract—Disruptive technologies proposed for 5G wireless
systems and the IoT hold promise of providing unprecedented
localization capabilities for a wide range of application scenarios
and target environments. This whitepaper summarizes the ex-
pected features and resulting properties of upcoming localization
systems exploiting 5G and IoT technologies. It also identifies the
important theoretical limitations and practical implementation
challenges at hand and recommends potential paths forward to-
wards more accurate, robust, and secure location-based services.

Index Terms—5G, IoT, Positioning, Application Scenarios,
Theoretical Limitations, State-of-the-Art.

I. INTRODUCTION

The use of radio signal for position tracking (positioning)
and navigation has a long tradition. Most notably, global
navigation satellite systems (GNSS), which originally have
been deployed for military purposes, are now widely applied
for civilian applications ranging all the way from tracking of
cargo containers to gaming. Nevertheless, GNSS suffer from
limited coverage in dense urban areas and—in particular—
indoors and also from a limited position accuracy.

These limitations rule out most location-based applications
that are concerned with the (natural) interaction of humans
with their immediate surroundings, the physical environment
in which we live, work, and spend our free time. However,
GNSS are also too limited to serve the increasing demands
on location-awareness, needed for instance for autonomous
driving.
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The fifth generation (5G) of mobile communication systems
and the advent of the Internet of Things (IoT) will provide a
range of new, advanced wireless technologies. The purpose
of this white paper is to highlight the expected benefits of
these new wireless technologies for the purpose of improved
positioning.

A. Structure and Scope of this Document

The paper starts with a summary of the most promising fu-
ture application scenarios for high-accuracy positioning (Sec-
tion II) followed by a discussion of the technical challenges
arising from the applications (Section III). We next illustrate in
Section IV the expected features and limitations of 5G and IoT
wireless systems with respect to positioning. Section V is an
attempt to describe the state-of-the-art of recent scientific and
technical progress in the field, highlighting the aspects of radio
channel modeling, performance limitations, algorithms, and
technical realizations. Positioning testbeds and prototypes are
described in Section VI, followed by non-technical challenges
such as privacy regulations, recommendations, and conclusions
in Sections VII– IX.

This white paper has been authored by members of the
Experimental Working Group "Localization and Tracking" of
the COST Action IRACON "Inclusive Radio Communication
Networks for 5G and Beyond" (www.iracon.org). The aims
of this COST Action range from achieving scientific break-
throughs by introducing novel design and analysis methods for
the 5th-generation (5G) and beyond-5G radio communication
networks, to making available several platforms that will allow
testing new solutions in real conditions, and the training of
young researchers.

Necessarily, the scope of such a white paper needs to
be limited. We’d like to point the interested reader to a
number of excellent, recent tutorial and review style articles
that have focused on several of the specific issues involved.
In particular, [1] envisions mm-wave based, single-anchor
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positioning systems for indoor applications, [2] identifies the
key properties of 5G as they relate to vehicular positioning,
[3] is a survey on robustness, security and privacy in location-
based services for the future IoT, [4] is a survey of cellular
mobile radio localization methods, from 1G to 5G, and [5] is
a survey of reliable and accurate indoor positioning system for
emergency responders.

B. Standardization Efforts

3GPP has been been working in the past on the standard-
ization of positioning capability for LTE and prior generations
and has definite plans for positioning inside future 5G with
ambituous performance goals in mind [4]. For the state of
discussion on 4th and prior generation positioning, the 3GPP
Study on indoor positioning enhancements for UTRA and
LTE (TR 37.857) [6] delivers a comprehensive evaluation
of achievable performance and possible enhancements within
LTE constraints. The study considers techniques directly based
on cellular signals as well as techniques external to 3GPP’s ra-
dio interface (e.g. terrestial beacon systems, use of barometer)
that still can deeply be integrated at protocol level. A precise
overview on the positioning feature of 3GPP’s narrowband IoT
technology NB-IOTs that was standardized during release 14
(March 2017) is given in [7]. Explicit standardization of posi-
tioning for 5G is yet to start. 3GPP continuously discusses the
refinement of its roadmap and explicitely names positioning as
one of the tasks for release 16 (starting from June 2018). [8]
gives up-to-date insight into working procedures and topics
to be tackled during release 16. There will likely be two
different paths to pursue work: positioning based on the Uplink
and Downlink signals of New Radio (NR), while Device-to-
Device (Sidelink) based positioning for Vehicle-to-Everything
(V2X) will be treated in a separate work item. Proposals to
structure the approach for both are put forward inside 3GPP.
[9] shows how companies around Intel imagine NR positioning
support and [10] (LG Electronics et al.) is an equivalent view
on the upcoming standardization phase of V2X, the first to
incorporate NR and high accuracy positioning.

II. NEW APPLICATION SCENARIOS AND END-USER
REQUIREMENTS

A. Intelligent Transportation Systems

In the context of ITS, positioning is required, both from
the point of view of individual vehicles and from a vehicle
network perspective. From the point of view of a single
vehicle, ego-positioning has in the past largely been limited to
navigation applications, where GPS accuracies were sufficient.
With increased levels of automation, more precise positioning
is needed to ensure vehicle stay within planned trajectories.
Supplemental information of obstacles, vulnerable road users
and other vehicles relative position with respect to the vehicle
for safe maneuvers is crucial. Vehicles sense their environment
and connect to the vehicle network perspective, where both
absolute and relative position information of vehicles is needed
for completing cooperative maneuvers. In all these scenarios,
due to the possibly high mobility, position information must
be both timely and accurate. Specific requirements have been

listed by 5G automotive [11] for several use cases. These
include automated overtake, cooperative collision avoidance,
and high-density platooning, which all require 30 cm accuracy
with 10 ms delay. In addition vulnerable road user discovery
requires 10 cm accuracy, though no delay listed. Accuracy
requirements were derived from the physical size of vehicles,
people, and roads, but did not account for velocities. The
delay requirements is derived from a controller, operating at 10
times the steering frequency (100 Hz). Requirements based on
typical velocities were detailed within the EU H2020 HIGHTS
project [12], surveying results of known ITS Geolocation
requirements. A large number of use cases are listed, of which
we here mention those with the tightest requirements in terms
of accuracy and delay: intersection coordination (20 cm, 100
ms), vulnerable road user localization (20 cm, 1 s), platooning
(10 cm, 20-50 ms), which are similar to those of EU H2020
TIMON project [13]. Finally, the more recent EU H2020
5GCAR project includes among its objectives to propose
5G radio-assisted positioning for vulnerable road users and
vehicles. For the former use case, the accuracy requirement is
1 meter, with a latency of 10-50 ms.

We conclude that (i) positioning requirements are less than
1 meter, beyond what can be achieved with current radio
technologies; (ii) latency requirements are on the order of 10
ms; (iii) 5G positioning is already being evaluated in European
projects.

B. Aerial Vehicles

Unmanned aerial vehicles (UAVs) will play a significant
role in both civilian and military applications from remote
sensing, search and rescue, to environmental monitoring, to
aerial communications and networking [14]. UAV navigation
and control requires precise localization and tracking. Tra-
ditionally, this is realized with data fusion approaches that
exploit inertial sensors and global navigation satellite systems
(GNSSs) [15], [16]. However, the availability and reliability of
GNSS-based position estimates cannot be always guaranteed,
for instance in an urban or sub-urban environment because of
severe multipath conditions, blockage of the satellites’ signals
but also due to the increase of non-intentional or intentional
interferences like jamming and spoofing [17]. Navigation of
UAVs is even more challenging in indoor environments such
as warehouses or GNSS denied environments as forests and
mines. Vision based navigation is a possible approach that
can partially circumvent these limitations. Potential future au-
tonomous UAV navigation applications need to fulfill stringent
precision, latency and safety requirements with the foreseen
use of terrestrial radio localization techniques. Both ad-hoc
solutions, e.g., based on ultra-wideband (UWB) ranging [18],
or opportunistic solutions [19], [20] that exploit existing radio
transmissions, e.g., in WiFi or cellular networks, for trilater-
ation or triangulation with antenna arrays, can be developed.
Mobile radio network based positioning, e.g., provided by 5G
communications, can act as a viable supporting positioning
scheme. The applicability of these signals of opportunity as
alternative and/or supplement to satellite based navigation
signals is currently an area of active research with a special
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focus on integrity. The increasing threat of cyber-attacks asks
among for elaborated anti-spoofing solutions. In the context
of airborne applications, operations are usually executed in
real-time. Therefore, especially if integrity requirements are
not met warning messages have to be communicated with a
latency in the order of a few ms only.

C. Industrial Applications

Industrial applications were classified in [21] under three
groups: industrial control, factory automation and process
automation. The requirements in these groups vary between
the applications: Industrial control and factory automation de-
mands precise positioning, low latency and the need to support
very high reliability and availability. For example robot posi-
tioning applications will require [21] that the positioning accu-
racy is within 10 cm and the latency is less than 15 ms. These
two groups are similar to the intelligent transportation systems
in terms of requirements while the operation range is shorter.
Industrial process automation targets monitoring and tracking
operations of IoT devices (for example tracking valuable tools,
containers or electronic equipment). Here massive number of
devices are foreseen; in addition, the battery lifetime of the
nodes shall operate over multiple years. Requirements on the
positioning accuracy are application dependent and can be
challenging for this class of devices when targeting below
0.5 m accuracy level inside an industrial plant. Prior solutions
for addressing industrial application have been mostly based
on RFID tags as low cost solutions. For example applications
that rely on dispatching goods by using RFID readers to check
them in when they arrive at a logistics center or warehouse,
and to check them out again when they leave. An RFID tag
provides information during the reading event if the reader
is close by the goods. IoT mobile positioning requirements
differentiate to others by the low power consumption, the
low price of the devices and the needed infrastructure for
communications. GNSS-IoT based solutions often fails to
acquire a position in an industrial environment or even to
sustain the energy consumption constraints of IoT applications.

D. Retail and assisted living

With the rapid growth of location-enabled applications, the
potential mass market opportunity for high-accuracy indoor
positioning is huge, especially in sectors like retail, marketing,
tourism and health-care. In retail, precise indoor navigation
can be beneficial for consumers to easily navigate to their
desired products, and also for the management to track
consumer movement habits and to perform optimal product
placement. Moreover, identifying consumers behavior and in-
store movements in big shopping malls or airports, can be
used for proximity marketing and advertisements [22], [23].
In museums and galleries, such applications track visitors,
recognize the artwork in front, and provide the visitors with
an automated description about the artworks [24]. For ambient
assisted living, location discovery is crucial for context-aware
service provisioning, ranging from home entertainment and
home automation, to activity detection and elderly monitoring
for medical tele-care solutions [25] or inside hospitals [26].

The common requirements of those applications are position
accuracy of about the human range, minimal setup efforts, easy
usage and low complexity of the algorithms, full coverage,
adaptiveness to the environment, low power consumption and
scalability, while tolerating latency of a few seconds. Existing
solutions based on WiFi or Bluetooth provide latencies be-
tween 2–5 seconds [26], with accuracies ranging from 23 cm
[27] to 4 m [26] for WiFi and 2–4 m for Bluetooth.

E. 3GPP Approach Towards Positioning Use Cases and Re-
quirements for 5G

3GPP as the joint standardization body of mobile network
operators, equipment supplier and chipset manufacturers has
been addressing the definition of next generation use cases
for 5G from early on. The SMARTER study (Feasibility
Study on New Services and Market Technology Enablers)
[21] collected already during 3GPP release 14 about 74
use cases grouped into five categories: Enhanced Mobile
Broadband, Critical Communications, Massive Machine Type
Communications, Network Operation and Enhancement of
Vehicle-to-Everything. A great number of the use cases name
the need for positioning. Indications on future requirements
already make clear that the targets are high, for example sub-
meter accuracies and low latency values below 15 ms for
positioning results. Requirements have been further studied,
for example as collected in the central Study on Scenarios and
Requirements for Next Generation Access Technologies TR
38.913 [28]. This document gives for the first time, in Section
9.2, an outlook on the actual realization of 5G positioning. For
example the support of hybrid positioning methods (sensor fu-
sion of various RAN-embedded and RAN-external techniques)
and the use of high bandwidth and massive antenna systems.
Positioning performance shall be scalable to suit different use
cases and it shall support a large number of devices. Current
work continues during the early stages of release 16 and refines
the definition of positioning use cases in the draft version of
the “Study on positioning use cases" [29].

III. TECHNICAL CHALLENGES

End-user requirements dictate the performance levels
needed for any technical system. This section describes a
number of challenging demands that have been identified for
emerging location-aware services.

a) Heterogeneity: Arising from the wide variety of po-
tential applications, the challenge of heterogeneity has to be
discussed. Unlike GNSS and cellular networks, where a single
technology platform is capable of supporting an extremely
wide range of application scenarios (in case of GPS and GSM,
literally with a “global” coverage), a diversity of (wireless)
technologies will be needed to support location-aware elec-
tronic systems with the performance requirements outlined
above. Smartphones are a dramatically more powerful platform
that already offers a range of wireless interfaces and other
sensors supporting localization. Future wireless standards,
which are currently being developed under the label of 5G
systems, will eventually offer a vastly enhanced localization
accuracy and reliability.
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Most likely, there will be no single positioning method to
satisfy all requirements as stated by [29]. Instead, 5G will
serve as an umbrella to combine multiple technologies, such
as NR, LTE, and Wifi. Thus, a great diversity of positioning
technologies will need to be combined in a data fusion
framework. A recent example is the Fine Time Measurement
(FTM) Feature of Wifi [30]. Wifi FTM positioning can deliver
accurate results in densely populated areas like cities, while
GNSS systems are most accurate in open sky conditions. To
increase the robustness, other sensors like IMU or magnetic
field sensors can be used for dead reckoning. To optimally
make use of all available sensors, the LTE Positioning Protocol
(LPP) also needs continuous enhancements.

b) Multipath propagation: For radio-based positioning
systems, multipath propagation is considered the key physical
challenge hindering the implementation of 10 cm-level posi-
tion accuracy. This applies similarly to indoor systems and
to global navigation satellite systems (GNSS)-based vehicular
applications. The presence of multiple propagation paths on
top of the line-of-sight (LOS) path often degrades the per-
formance of localization algorithms (see Section V-C). Note
that, if the propagation paths can be resolved, the presence
of multipath can be an asset for localization (Section V-D).
However, resolving the propagation paths often requires high-
end radio transceivers and large antenna arrays, which are
inconsistent with low-cost cellular devices or IoT nodes.

c) Line-of-sight availability: The continuity of service is
strongly related to the availability/visibility of infrastructure
such as beacon radio signals. In case of radio systems targeting
at the 10 cm-accuracy level, even one blocked line-of-sight
(LOS) connection may be sufficient to interrupt correctness.
Optical systems rely on the availability of map information
to facilitate absolute positioning. Changes in the environment
may significantly impact on map (and fingerprinting) based
techniques, resulting in a poor robustness. Intended (from
competing radios or adversaries) and unintended man-made
interference signals are another potential threat to be consid-
ered [3].

d) Time synchronization: Radio transceivers derive their
internal timing reference from independent local oscillators,
and because of manufacturing tolerances and temperature vari-
ations, these oscillators undergo random phase and frequency
drifts over time. Synchronizing the timing reference of inde-
pendent radio transceivers is therefore an important prereq-
uisite for systems that use propagation delay estimation. The
simplest method is to share a common local oscillator through
dedicated backbone network [31], [32], but this solution is
often expensive and lacking in deployment flexibility. For out-
door systems, GNSS UTC timing references are traditionally
used to synchronize different base stations, with accuracies
up to 30 parts-per-billion (ppb) [31], [33]. However, GNSS
is often unavailable in indoor environments and unreliable for
pico-cells placed in dense urban canyons. Network-based syn-
chronization, such as the IEEE 1588 protocol, is currently still
in the 1 parts-per-million range [34], an order-of-magnitude
below the current requirements in radio networks. Therefore,
over-the-air synchronization with minimal bandwidth usage
will be an important requirement of future localization sys-

tems. Some papers have recently provided tentative prototypes
of such timing synchronization systems [35], [36].

Virtual synchronization is another approach that provides
accurate positioning estimates for unsynchronized anchors or
beacon systems equipped with low quality oscillators. In this
approach, at least one reference base station at a known
position is required to monitor the time of transmission and
clock deviations of each anchor or beacon in a given area. The
positioning devices or location server uses these parameters to
correct the measurements [37] [38] [39] .

e) Hardware complexity in large antenna array systems:
Large antenna array systems can significantly improve the
precision of angle-of-arrival based localization systems [40].
However, a number of challenges need to be tackled both
at the hardware domain and at the signal processing domain
[41]. Firstly, fully digital architectures require the realization
of a prohibitively high number of RF-to-Base-Band chains
[42]. Thus, novel mixed analog-digital architectures must be
devised, for instance exploiting RF switched antenna schemes
or phase shifters techniques in analog domain [43], [44].
The cost reduction challenge may lead to increased hardware
imperfections, most prominently significant carrier frequency
offsets, phase noise and I/Q imbalances [45], [46]. Moreover,
higher quantization noise levels are observed by using low-
cost A/D converters. Energy consumption is also an issue that
is exacerbated in large antenna arrays where a massive amount
of data needs to be processed [47]. Furthermore, appropriate
antenna configurations have to be studied to meet stringent
physical space limitations [46]. Denser antenna arrays in-
troduce mutual coupling, unequal gains and phase response
effects that require improved design and calibration techniques
[42], [48].

f) Power consumption and computational burden: Power
consumption is one of the main technical challenges in mobile
devices for IoT applications. These sensors are expected to
have a long battery life (e.g. years-long battery life), thus
their operational tasks have limited computational burden.
Furthermore, their cost has to be very low in order to allow
the deployment of thousands of these devices. Given the
high amount and low-complexity of IoT devices, the network
resources allocated for these devices are also very limited, such
as the signal bandwidth. This reduces the number of applicable
location methods.

g) MAC: latency and bandwidth usage: 5G networks
pose challenging requirements in terms of the design of MAC
layer techniques. The need to support a massive number of
“always connected" devices that communicate sporadically
(e.g. machine-type communications or IoT) is of particular
importance. Traditional centralized MAC solutions for cellular
systems are based on orthogonal access schemes that are
incapable of supporting a massive number of devices due to
the large control overhead and severe latency. Random access
MAC (RA-MAC) schemes are being proposed for different
Low power wide-area networks (LP-WANs) (e.g. LoRa), since
they decrease the control overhead and can effectively achieve
low latency. However, the schemes proposed so far are not
prepared to support high spatial density of devices and their
reliability and throughput sharply decreases with the number
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of devices [49]. To support accurate localization methods
future decentralized MAC schemes must also include addi-
tional features, such as time guaranteed services to support the
positioning anchors’ transmission in a reliable and exclusive
way. Therefore, future MAC policies must have into account
the specific services needs related with low delay and massive
number of devices, while optimizing the bandwidth usage
to accommodate the specific requirements of the localization
methods.

IV. EXPECTED FEATURES AND LIMITATIONS OF 5G AND
IOT WITH RESPECT TO POSITIONING

The expected positioning accuracy in 5G is less than 1 m
in urban (and indoor) scenarios and less than 2 m in sub-
urban scenarios where the vehicle speeds are up to 100 Km/h
[50]. As emphasized in [2], some of the open challenges in
5G positioning are: i) how to optimally combine the cmWave
with mmWave positioning; ii) how to design low-cost highly-
accurate algorithms through data fusion of 5G with various
other sources (cameras, inertial, ...) and through cooperative
positioning; iii) how to jointly optimize the communication
and positioning targets, which often do not go hand in hand;
iv) how to exploit multipath reflections/NLoS scenarios to
improve the positioning accuracy; v) how to design synchro-
nization and quantization algorithms for large antenna arrays
embedded on moving devices to better support DoA-based
positioning. In contrast, IoT technologies aim at providing
communications to a massive number of low-power and low-
cost devices, with a trend for mesh topologies with simple
protocols. As a consequence, the positioning capabilities of
IoT systems are limited in order to cope with these challenges.
A comparison between 5G and main IoT technologies is
illustrated in Fig. 1 in terms of the five criteria discussed in
this section, together with the positioning accuracy. The main
features and limitations of 5G and IoT positioning aspects are
discussed in the next sub-sections.

Ranges

Data Rates

Latency
Power efficiency/

Battery life

Positioning accuracy

NB-IoT

LoRa

Sigfox

BLE

5G

ZigBee

DASH7

RFID

Fig. 1. Comparative aspects of main IoT technologies with 5G.

A. Features and Limitations of 5G Wireless Systems
5G is characterized with several disruptive features, which

have direct implications to positioning [2]. These features
include network densification, mm-Wave and massive MIMO
[51], as well as device-to-device communication [52]. In
particular, 5G NR will specifically rely on mm-Wave and
massive MIMO, while network densification and device-to-
device communication are evolutions of 4G systems.

1) Higher bandwidth and new frequency bands: 5G will
employ new frequency bands in the mmWave spectrum (above
24 GHz), where large bandwidth are available than in the
crowded 6 GHz band. This has a dual effect on positioning. On
the one hand, larger bandwidths allow for a higher degree of
delay resolution, so that individual multipath components can
be estimated and tracked. On the other hand, the large carrier
frequency leads to more optical-like propagation, with reduced
shadowing, diffraction, and effectively only a few propagation
paths [53]. Hence, only few paths must be estimated and
tracked and each path has a geometric connection to the phys-
ical propagation environment. In the sub-6GHz band, large
bandwidths will also be available with carrier aggregation, but
more dominant propagation paths will be present.

2) More antennas: With higher carrier frequencies and
shorter wavelengths comes the opportunity to pack more
antennas into a given area [54]. Above 24 GHz, planar arrays
with hundreds of antennas are feasible. To limit costs and
power consumption, not all antennas will be equipped with
ADCs so that only few streams will be supported by this
large number of antennas. Conversion from streams to an-
tennas will occur through a combination of digital and analog
beamforming. More antenna elements provides the opportunity
to increase the resolution of the channel in the spatial domain
(angle of arrival and angle of departure, in azimuth and eleva-
tion), providing a new way to separate multipath components
(other than in the delay domain). More antenna elements also
help in more accurate angle estimation, though this must be
balanced with limited precoding capabilities due to having
fewer RF chains than antenna elements. Hence, combined with
high carriers and large bandwidths, more antennas leads to a
high degree of resolvability and high accuracy of estimating
multipath components, each with an associated delay, angle
of arrival, and angle of departure. This implies that absolute
positioning with respect to a single reference transmitter is
possible, as well as identification of the sources of each
reflected or scattered path.

3) Network densification: Increased area spectral efficiency
is obtained from a denser deployment of base stations with
a reduced coverage area and aggressive spectral reuse. This
requires sophisticated solutions for interference and mobility
management [55]. For positioning, ultra-dense networks are
beneficial since the distance to reference transmitters is re-
duced. The reason is two-fold. Firstly, with ranges from 5-50
meters, the probability of having a line-of-sight connection
is upward of 50 % [56], which in turn is highly beneficial
for localization as the delay and angle information from the
optical line-of-sight path provide the most location-relevant
information of all multipath components. Secondly, with a
dense radio-access network seamless multi-connectivity can be
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established between terminals and base-station via multi-beam
communication. This increases the robustness to line-of-sight
obstruction as well as improve localization accuracy.

4) Device-to-device communications: Since LTE Release
12, D2D communication is considered a candidate technology
for proximity detection. In 5G, D2D will be native, for high-
rate links between nearby users, benefiting from low path
loss, low transmit powers, and extremely low latency [57].
Such D2D links also provide an additional source of position
information, where well-positioned users can serve as (noisy)
location references for users out of direct coverage of base
stations. Moreover, D2D links can provide relative position
information as well as a mean to develop efficient cooperative
positioning schemes for achieving higher accuracy.

B. Features and Limitations of IoT Devices

Different IoT applications require different, and often con-
flicting, goals in terms of range or coverage, rate or throughput,
power consumption, and latency. The current IoT landscape
includes both proprietary and standardized solutions, that try
to satisfy different requirements in terms of the ideal case of
wide-coverage, high-throughput, low-power and low-latency.
A general classification of IoT solutions according to the four
axes (range, power, rate, latency) is shown in Fig. 2. These
IoT solutions can then provide positioning capabilities, which
have different limitations depending on the system design.

Range Power Latency

Short Long Low High Low High

RF-ID
BLE
ZigBee
ANT
Z-wave
6LPWA
DASH7
...

LoRa
Sigfox
LRLP
(802.11)
...

ZigBee
LoRa
Ingenu
Sigfox
Telensa
EC-GSM-IoT
NB-IoT
DASH7
Wirepas
Weightless
(N/P/W)
...

NB-IoT
...

DASH7
Wirepas
...

Rate or Throughput

Low High

ZigBee
LoRa
Ingenu
Sigfox
Telensa
NB-IoT
DASH7
...

BLE
Wirepas
...

Fig. 2. IoT classification and examples.

1) Long range: Long-range IoT applications include asset
tracking, smart city, smart metering, smart farming, smart
retail and logistics, etc. Currently, there are two main compet-
ing IoT proprietary solutions to achieve long-range commu-
nications: LoRa and Sigfox. Long Range (LoRa) Wide Area
Network is a low-power proprietary technology in ISM band,
based on chirp spread spectrum modulation with spreading
factor between 7 and 12. LoRa bandwidths range between
125 and 500 kHz and can be adjusted according to the
used spreading factor, in order to attain the required trade-off
between range and data rates. The spread spectrum modulation
used in LoRa enables long-range communications of up to 30
km ranges [58], [59]. Sigfox is also able to reach long-range

communications of several tens of km by operating in sub-
1GHz bands, currently leading the public deployments of IoT
solutions in Europe. It relies on the so-called Ultra Narrow-
Band (UNB) modulation (i.e., bandwidths below 1 kHz) which
helps in achieving long ranges, as the ultra-narrow receiver
filters most of the in-band noise. Field tests with Sigfox in
[60] showed achievable Sigfox ranges of up to 25 km.

These proprietary solutions do not have any positioning
features specified or included in the standard. Thus, classical
positioning approaches, such as fingerprinting based on signal
powers, can be applied independently on the system, as long
as the designer has access to the received signal power or the
backscattered power measurements. However, the performance
of these methods is significantly degraded due to the long-
range communications. Timing-based schemes can be also
implemented, but their performance is greatly reduced for
these narrowband signals. Despite the limited studies on the
positioning accuracy of these IoT solutions, when no addi-
tional GNSS receivers are used, trilateration methods with
LoRa timestamps result in a position accuracy of hundreds
of meters, as it can be found in [61].

Furthermore, there are two main standard technologies for
long-range IoT solutions, which are IEEE 802.11 Long Range
Low Power (LRLP) and the 3GPP narrowband technologies,
i.e., LTE-M, LTE NB-IoT and EC-GSM-IoT. The IEEE 802.11
LRLP is a relatively new topic interest group, established
in 2015 within IEEE 802.11 working group [62] for IoT,
M2M, energy management and sensor applications. The 3GPP
narrowband technologies are evolving really fast with a major
support from the industry. In addition, their positioning ca-
pabilities are under standardisation, as it is described in [7].
The main positioning advantage of these standard technologies
with respect to proprietary solutions is the use of licensed
bands to reduce interference, and the dedication of network
resources for positioning, such as pilot signals and positioning
protocols.

Following the trend of LTE NB-IoT, the 5G standard is
expected to include dedicated pilot signals and protocols
for positioning, in order to cover the limited IoT position-
ing requirements. Still, the narrow bandwidth and the large
coverage of IoT communications in 5G are the two main
limitations in terms of positioning performance. However, with
the advent of large antenna arrays at the base stations new
opportunities to accurately estimation the location of NB-IoT
devices arise. Various well-established algorithms for angle of
arrival estimation can be employed, e.g. [63].

2) Short range and narrowband: Short-range IoT applica-
tions, such as smart home, wearables, health and fitness, etc,
are typically provided indoors. Examples of short-range IoT
technologies are the Radio Frequency Identification (RFID),
Bluetooth Low Energy (BLE), and in particularly BLE mesh,
ZigBee, ANT and ANT+, DASH7, etc. [64]. These tech-
nologies have a low bandwidth, but thanks to the short-
range communications, they are able to achieve high-accuracy
positioning. The main techniques are based on fingerprinting
or proximity techniques, where meter-level accuracies can be
achieved, such as with RFID in [65]. Advanced techniques can
be based on the use of angle measurements [66]. However, to
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achieve a high precision, they require large antenna arrays at
the receiver side (e.g. readers in RFID technologies), resulting
in an increase on the complexity and cost of the IoT system
[66].

3) Short range and wideband: Short-range IoT communi-
cations can also be based on wideband technologies, such as
the IEEE 802.15.4a UWB standard. This standard is based on
the direct sequence UWB modulation, which offers spectral
efficiency, robustness at low transmit powers, and precise rang-
ing. Thus, thanks to the wide bandwidth, the IEEE 802.15.4a
UWB standard is able to achieve centimetre-level accuracies
[67]. In addition, these short-range wideband signals result in
practically deterministic MPCs, thus they can also be exploited
for multipath-assisted localization, as it is shown in [68]
with off-the-shelf devices. Using these MPCs, single-anchor
localization can be implemented reducing the infrastructure
required for the IoT positioning system.

UWB signals can also be implemented in RFID-based sys-
tems, as it reviewed in [66]. The use of wideband backscattered
signals allows precise ranging measurements, while preserving
the system complexity and cost. The main limitations of the
UWB-RFID technology are the poor energy efficiency, the
short range and the costly ad-hoc infrastructure. Future per-
spectives of RFID are the exploitation of mmW technologies.

4) Low power and low throughput: Currently, the vast
majority of IoT solutions have been designed for low-power
low-rate applications, namely with battery life lasting years.
Current solutions in IoT range from few years of the battery
life on the IoT sensor (e.g., 6LoWPAN/6LPWA, BLE) up to
more than 10 years battery life (e.g., NB-IoT, LoRa, Sigfox).
Typically, IoT solutions have very low throughputs from few
tens of bits per second (bps) up to few hundreds of kbps.

The low-power and low-rate features have a strong impact
on the positioning techniques applicable to IoT technolo-
gies. Since the transmission time is reduced, the number
of positioning measurements is reduced, leading to simple
positioning protocols with minimal assistance. Furthermore,
the positioning operations on the IoT device need to have a
very low-complexity to achieve a low power consumption.

V. RELATED WORK

A. Introduction

In general, position estimation techniques involve a prag-
matic two-step process. First, a set of signals are exchanged
between one or more mobile nodes to be localized and
reference nodes (anchors), located in known positions, from
which a number of position-related parameters (observables)
are estimated (measurement acquisition). Then, the position
of the node(s) is determined based on those signal parameters
(localization/tracking) through a proper localization algorithm
that accounts for geometric relationships as well as statistical
models of measurements.

Every measurable signal which conveys position-dependent
information can be in principle exploited to estimate the
position of the mobile nodes. When radio signals are con-
sidered, useful position-dependent information can be derived
by analyzing observables such as received signal strength

(RSS), time-of-arrival (TOA), angle-of-arrival (AOA), phase,
or combinations of them, depending on the available radio
technology and its complexity. The exploited observables
affect the choice, complexity, and resulting accuracy of the
localization algorithm.

This section summarizes recent work related to the tasks
of measurement acquisition and position estimation. It starts
with a discussion of radio channel properties and channel
modeling considerations (Section V-B), continues with theoret-
ical performance limits derived from the measurement models
(Section V-C), and then describes positioning methods and
algorithms (Section V-D), following a bottom-up approach.
Finally, in Section V-E, selected, recent advances in position-
ing technologies are summarized.

B. Propagation and Channel Models for Localization

Radio localization relies heavily on knowledge of the in-
terplay between the geometry of the propagation scenario, ra-
diowave propagation and the observables used for localization.
As is usual practice in other fields of radio engineering, this
knowledge is usually provided in the form of a radio channel
model. The term "channel model" is inherited from the field
of communications engineering where communications take
place via channels. The field of radio channel modeling (for
communications) has a long history of development.

1) Purpose of Channel Modeling for Localization: Simi-
larly to communication systems where the channel determines
the ultimate performance, in localization systems the accuracy
is strongly affected by channel conditions and, in particular,
by the presence of multipath components (MPCs). Even more,
while in communication the transmitted data are independent
of the channel, in localization systems the information as-
sociated to the position is embedded in channel parameters
such as TOA or RSS. Therefore, there is the need for channel
models able to capture such dependence between position and
channel properties. Although some overlap in methodology is
to be expected when similar radio channels are considered,
the models used in communications cannot be expected to
completely match the needs of the developer of a localization
system [69].

Channel models are needed for a range of different purposes
in the development of localization systems, as listed below.

a) Analytical tools in the derivation of localization algo-
rithms: Propagation and channel models are used as analytical
tools in the derivation of localization algorithms. To fulfill
this purpose a channel model should be analytically tractable,
while at the same time should account for the location-
dependency of the observables considered while other effects
are abstracted away. Such models usually include the con-
nection between observables (e.g. RSS/PDOA, TOA/TDOA,
AOA, channel’s impulse response, etc.) and location informa-
tion in some analytically tractable way. Examples of these
types of models include range error models used in cooperative
localization where the RSS or TOA range-dependance is
defined and corresponding ranging errors are accounted for as
additive random variables independent of location [70]–[74].
Another example is the simplified modeling of Geometrical



COST CA15104 (IRACON); WHITEPAPER; APRIL 2018 8

Optics [75] used in multipath-assisted localization methods
[1], [76].

b) Performance bounds derivation: Channel models are
used as analytical tools to derive theoretical performance
limits for localization. To achieve useful bounds, simplistic
models are assumed (e.g. [77]–[79]). However, the derived
bounds are only valid under the exact conditions for which
they are derived. Section V-C describes some recent work on
performance bounds.

c) Channel prediction for fingerprinting localization:
Deterministic channel models such as ray-based models or
electromagnetic models can be used to perform a pixel-based
prediction of one or more observables all over the considered
domain, in order for an optimization algorithm to determine
the mobile location based on the correlation between the mea-
sured and predicted observables ("fingerprinting localization",
see Section V-D) [67], [80], [81].

d) Link-level localization simulation: Channel models
are used for performance simulations of subcomponents of
a localization system. Here subcomponents could be e.g.
estimators for range or direction based on data for a single
communication link. The performance of such estimators is
potentially affected by many more effects encountered in the
communication channel than those accounted for during their
derivation. Therefore, such simulations aim at modeling the
link channel in realistic manner to obtain accurate predictions
of the subcomponent’s performance.

e) System-Level localization simulation: Channel models
are used for system wide performance simulations for localiza-
tion systems. Here it is tested how the subcomponents of the
localization system work in combination. The considerations
for this type of simulations are similar to the test of subcom-
ponents. However, due to the greater complexity of such tests
(possibly encompassing a large number of subcomponents),
the requirements in terms of computational complexity of such
a model (per link) are more challenging.

Channel modelling is used in c)-e) to replace to time-
consuming measurement campaigns.

Purposes d) and e), necessitate to achieve reliable per-
formance assessments considering several possible realistic
environments and system configurations (realizations). One ap-
proach to achieve this is to simulate some reference cases using
site-specific methods. The inherent complexity of site-specific
modelling however may limit the number of realizations that
can be obtained with this approach.

Another approach is to consider evaluation of the operating
characteristics of a component/whole system over a large
number (possibly millions) of realizations. In this case, it
is important that the model is able to capture the statistical
characteristics of the channel, but not necessarily that each
realization is completely realistic in all aspects. So-called
geometry-based stochastic channel models (GSCMs) fullfill
this requirement. A popular example are the cluster-based
GSCMs, where clusters of scatter points are used to obtain
MPCs with spatially consistent fading properties. The geom-
etry of the clusters and scatter points are randomly generated
[82]–[84].

Fig. 3. Measured channel impulse responses with MPCs matched to
a simple geometric model representing delays and visibilities (from
[85]).

2) Propagation effects: Propagation in real-life environ-
ment (and especially urban and indoor environments) is char-
acterized by multipath propagation, i.e. the presence of several
propagation paths, including the direct path when the radio
link operates in LOS conditions. In variable terms depending
on propagation characteristics, system characteristics and the
kind of approach, multipath can be divided into two compo-
nents, which are treated differently within localization systems.

a) Specular, deterministic component: Deterministic
specular paths (i.e. likely generated by a few specular re-
flections and diffractions) whose characteristics (e.g. TOA,
AOA) are well defined and depend on the position (goal of the
estimation process). In this case, if the dependence between
the MPCs characteristic and the position is known through, for
example, geometrical optics relationships, then the multipath
can be positively exploited to improve the position estimation
accuracy. Note that this requires some a priori information
about the geometric and electromagnetic characteristics of the
environment in order to exploit the dependence between the
MPC characteristics and the position. This open the possibility
to explore fingerprinting [67], [80], [81] or multipath-assisted
localization techniques [1], [76].

b) Diffuse, random component: A high number of diffuse
or multiple-bounce paths whose TOA and/or AOA values
are very close to each other, the so-called Dense Multipath
Component, DMC. Such paths show random characteristics,
therefore uncorrelated with the position, or whose relationship
with the position is unknown. In this case, MPCs cannot
bring further useful information for localization and must be
characterized through nuisance parameters related to local-
ization performance degradation and therefore to perfomance
bounds [78]. Note that this is different to what happens in
communications systems where the DMC can be successfully
exploited to increase the communication reliability or rate (e.g.
OFDM transmission).

Figure 3 shows measured CIRs from an indoor environment



COST CA15104 (IRACON); WHITEPAPER; APRIL 2018 9

along a trajectory. It also illustrates the hypothetical arrival
times of a set of MPCs, computed from a simple mirror-
source model. Notice the good match between model and
measurement [85], which illustrates the potentially useful
information contained in the delay of these MPCs. Inbetween
the specular components, the diffuse, random components can
be seen.

In real-life radio channels both components are present
to some extent: the specular component is relatively more
evident than the DMC in LOS or quasi-LOS conditions, simple
environments, higher frequencies [86], and when the system
has enough bandwidth or antenna elements to resolve a high
number of paths. Channel modeling typically need to account
for both types of propagation characteristics.

3) Modeling principles: Classical narrowband empirical-
statistical models such as Hata-like models [87] only account
for average path loss vs. radial distance, multipath is only
accounted for through a statistical fading description. Being
empirical, they need to be parametrized through calibration
measurements.

Other empirical-statistical propagation models are aimed ad
describing the temporal characteristics of multipath, includ-
ing specular and diffuse components, for different kinds of
environment, using a parametric tapped-delay-line description
[88], [89]. Such models are suitable for characterize TOA
measurements and their uncertainty for UWB localization.

Deterministic Ray Tracing and Ray Launching models
based on Geometrical Optics can generate a good site-specific
description of the specular component for a given environment,
provided that the environment (including terminals positions
and system configuration) is accurately described through a
proper input database [90]. They can be therefore used for
localization in fingerprinting methods [80], [91], [92] and
multipath-assisted methods [1], [93]. However they fail to
describe the DMC and therefore need to be integrated with
ray-based diffuse scattering models [94]. In [1], [93], a simple
non-stationary Gaussian model has been used to account for
the DMC.

So-called Geometry-based Stochastic Channel Models
(GSCMs) describe multipath propagation in a statistical way.
Typically they make use of clusters of scatter points to obtain
aggregate MPCs, somehow including both the specular and
the diffuse component, with spatially consistent characteristics
and fading properties. Cluster and scatter point positions in
either the Euclidean or Angular space are usually randomly
generated using proper parameters to describe a given class of
environments (e.g. small-indoor, large-indoor, macrocellular,
vehicular, etc.) [82]–[84]. Since GSCM are not site-specific
they cannot represent a propagation engine for localization
algorithms, but they can serve to efficiently simulate the
localization performance of different algorithms for an entire
class of environments, as already pointed out in the preceding
sub-section. Recently, map-based models have been proposed
that somehow introduce a more deterministic description into
the GSCM paradigm, and therefore can be though of as a
combination of GSCM and Ray Tracing models [95], [96].

Channel models based on Graph Theory have been proposed
to efficiently simulate multipath radio propagation including

the reverberation effect of electromagnetic waves in indoor en-
vironments [97]. In this approach scatter points are distributed
either randomly or according to the physical characteristics of
a given environment and MPCs are generated up to an arbitrary
(possibly unbounded) number of bounces. The approach how-
ever is more suitable to describe the diffuse component rather
than the specular one, and therefore combinations of graph-
based and ray-based modeling have been proposed to describe
both components in a physically consistent way [98], [99]. The
propagation graph framework has recently been extended to
include time-varying channels [100] and polarization effects
[101]. Depending on how deterministic is the description of
the environment such models might be used for localization
or for simulation purposes.

C. Theoretical Performance Limits

Theoretical performance limits provide insight into what
performance levels can possibly be achieved, based on some
given signal model. Provided that the signal model reflects
the physical properties of the propagation environment—i.e.
the radio channel characteristics—the performance limits can
quantify the ultimate performance limits in a certain scenario.
The aim of this section is to highlight these performance limits.

1) Performance limits in measurements acquisition:
a) Performance limits on TOA estimation: Distance es-

timation (ranging) is accomplished from the time-of-flight
(TOF) of the transmitted radio signal. For this purpose, it is
of fundamental importance to obtain a good estimation of the
time-of-arrival (TOA) of the received signal. It is well-known
from classic estimation theory that whatever (unbiased) TOA
estimator is considered, its root mean square error (RMSE)
performance is bounded by the Cramèr-Rao lower bound
(CRLB). In simple AWGN channel conditions (only the direct
LOS path is present), the CRLB is given as [102]

var{τ̂} ≥ CRLBTOA =
1

8π2 SNRβ2
, (1)

where SNR is the signal-to-noise ratio (SNR) and β is the
effective bandwidth of the received signal. This simple expres-
sion clearly shows the benefit of having (ultra) wide bandwidth
signals and a high SNR.

However, in a realistic multipath channel, the performance
will rather be limited by interfering multipath than by AWGN
[77]. It has been demonstrated that such interference can be
quantified by replacing the SNR in (1) by an (effective) signal-
to-interference-and-noise-ratio (SINR) [78], [79]. The SINR
characterizes the resulting performance limit and also the
detectability of the LOS and other MPCs within the interfering
(dense/diffuse) multipath.

An example is given in Fig. 4 (c.f. [78]). It demonstrates that
the ranging error bound (REB) scales faster than quadratically
with the bandwidth (due to the interfering multipath—for
comparison, the REB according to (1) is included) and linearly
with the diversity order. (SISO refers to a single-input, single-
output channel, while the 16-branch case corresponds e.g.
to a 4 × 4 MIMO configuration.) The detectability of the
useful LOS component in dense multipath is evident in the
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Fig. 4. Ranging error bound (REB) and simulated range estimation
(MF, ML) standard deviations (from [78]). Channel and signal
parameters: ELOS/N0 = 30 dB, Ricean K-factor: KLOS = 0 dB,
RMS delay spread 17.3 ns; signal: root-raised-cosine pulse, roll-off
R = 0.6.

way how the simulated matched filter (MF) and maximum
likelihood (ML) estimators diverge from the REBs. The MF
estimator suffers from outliers induced by the multipath, while
the ML fails at low bandwidth, where the SINR of the LOS
drops below a critical threshold. Note that the CRLB does not
account for ambiguities and estimation outliers. Other bounds
can be of utility for analyzing such effects, as e.g. the Ziv-
Zakai bound [67].

b) Impact of clock drift: It is worth mentioning that an
accurate TOA estimate is not sufficient to achieve accurate
ranging. In fact, time-based ranging requires precise time
interval measurements (e.g., with errors in the order of 1 ns
or less when centimeter accuracy is required). To this end,
nodes are equipped with an oscillator from which an internal
clock reference is derived to measure the true time. Numerous
physical effects cause oscillators to experience independent
frequency drifts which result in large timing errors. In sym-
metric double-sided two-way ranging, three consecutive range
measurements are performed to jointly estimate clock offset,
linear clock drift, and distance between two nodes [88]. In
time-difference-of-arrival (TDOA) positioning, synchroniza-
tion is needed between the anchors only and an additional
measurement is used to jointly estimate the clock offset of the
agent and its position [77]. Joint synchronization and position
estimation can also be achieved in cooperative [103] and in
multipath-assisted scenarios [79].

c) Performance limits on AOA and RSS estimation:
The CRLB for estimating the angle-of-arrival (AOA) can be
derived in similar fashion as for the TOA [104], [105]. In an
AWGN channel, it scales with the product of SNR and squared
carrier frequency and antenna aperture, relating to the fact
that the carrier-phase difference among multiple array antenna
elements is being exploited. Again, multipath will dictate the
practical performance limit.

For RSS based range estimation, a path-loss plus log-
normal shadowing channel model can be used to derive the
CRLB [106]. The performance depends strongly on the current
distance—due to the exponential path-loss model—and on
the actual shadowing variance of the channel. Small-scale
fading potentially introduces a large among of measurement
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Fig. 5. Position error bound PEB (in meters) in single-anchor localization
with massive arrays averaged over RX orientations. Ntx = 25, Nrx: number
of transmitting and receiving antennas.

noise. Fingerprinting methods make an attempt at modeling the
large-scale position dependence of the received power, which
improves the accuracy [106].

2) Performance limits in Localization/Tracking: Multiple
range and/or AOA measurements will be combined to obtain
a position estimate. Geometric interpretations of the resulting
position error bound have been presented in [77], [105]. Based
on these fundamental observations, the performance limits
have been analyzed for a range of localization scenarios.

a) Mm-wave, single-anchor, massive array localization:
Among the potential advantages of the upcomming millimeter-
wave technology and the consequent possibility to pack a large
number of antenna elements even in small spaces, the most
appealing is the possibility to localize mobiles using a single
anchor node [1], [107]. In fact, the use of only one anchor
node will allow the exploitation of the same infrastructure
used for communications also for positioning purposes [66].
This overcomes the problem of deploying a redundant ad-hoc
infrastructure which is, nowadays, a major bottleneck for the
widespread adoption of indoor localization systems.

The most intriguing single-anchor scenario in which both
the anchor and the mobile node are equipped with an antenna
array is studied in [108]–[110]. As expected, the positioning
and orientation performance increases as the number of an-
tenna elements increases. In particular, in [110] the differences
between MIMO signal processing (using orthogonal waveform
at each antenna) and beamforming is investigated. It is shown
that while beamforming allows for SNR enhancement, this
is beneficial only in particular geometric configurations and
does not allow the estimation of the agent orientation on the
uplink [108]. On the other hand, the MIMO configuration,
thanks to the orthogonality of waveforms, provides a higher
number of independent measurements (diversity) which leads
to a better performance at the expense of a higher complexity.
An example of such behavior is given in Fig. 5 where the
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theoretical performance in terms of average position error
bound (PEB) is reported as a function of the number of
antennas Nrx at the anchor node. Specifically, these results
have been obtained by considering the mobile node at 5
meters from the anchor node transmitting at 60 GHz with an
EIRP of 30 dBm (SNR=25 dB) and bandwidth of 1GHz. The
figure also includes the performance attainable using a simple
strategy in which the weights of the array are randomly chosen.

The performance of single-anchor position estimators can
be additionally improved by exploiting geometry information
from deterministic MPCs (c.f. Section V-B). Each determinis-
tic MPC adds useful position information, as discussed in [1],
[79], [108], [111].

b) Sub-6 GHz localization: Sub-6GHz cellular deploy-
ments are expected to have a higher coverage than mmWave
deployments, due the low propagation losses. But the scarce
spectrum limits the available bandwidth, resulting in a strong
limitation on the achievable positioning performance. The
main localization challenges are the visibility of multiple
reference stations, the inter-cell interference and the dense
multipath in indoor and urban environments [4]. In addition,
multilateration techniques require a tight network synchroniza-
tion.

The performance limits of the vehicular use case have been
studied in [112], based only on ranging measurements from
LTE vehicle-to-infrastructure (V2I) communications. This ve-
hicular positioning scenario is characterized by a poor ge-
ometry, limited bandwidth, and predominant LoS conditions
from the serving base station. The LTE network is assumed
to transmit the positioning reference signal (PRS), which is
a dedicated pilot signal with interference-avoidance mecha-
nisms. The network infrastructure is based on synchronized
road-side-units (RSUs) or dedicated BSs at one or both sides
of the road. Given an inter-site distance (ISD) equal to 500 m
between BSs along the road and 20 MHz of bandwidth, the
uplink TDoA position accuracy of the vehicle is in the order
of several tens of meters, due the poor geometry and the
distance-dependent LoS conditions [112]. The network density
and the system bandwidth need to be increased in order to
achieve sub-meter accuracy. With an ISD equal to 100 m
and a carrier-aggregated bandwidth of 100 MHz, sub-meter
accuracy is achieved in 95% of the cases. The poor geometry
can be relaxed by combining range and angle measurements,
as studied in [113]. The use of multiple antennas at the
BSs allows to achieve sub-meter position accuracy in urban
environments, with only one or two visible BSs, using an
EKF algorithm. However, this solution still requires ultra-
dense networks with an ISD around 50 m.

3) Trade-off between position accuracy and communication
data-rate: As mm-wave has the anticipated dual use of
communication and positioning, it becomes natural to analyze
the trade-off arising from the shared time-frequency resources.

In [114]–[116], for instance, it has been assumed that
positioning information is acquired during the beam training
phase of the mm-wave wireless system. The beam training
procedure occurs periodically, introducing a certain overhead
and loss of data rate. The positioning accuracy was computed
from the CRLB after the beam training phased is completed.

On the other hand, the data-rate is calculated by considering
the codebook size (related also to the number of antennas),
beam training strategy, and the bandwidth taken for an OFDM
transmission. A main conclusion is that accurate position and
rotation estimation can be achieved using the training signal
used for beam alignment only, keeping the overhead at a
limited level.

D. Positioning Methods and Algorithms

Methods and algorithms for positioning and position track-
ing are discussed in this subsection, taking into consideration
the propagation characteristics, which relate to the actual
observables to be used, and the theoretical performance limits.

1) Multipath-assisted localization: Multipath-assisted lo-
calization exploits specular multipath components (MPCs)
to obtain additional position information contained in radio
signals [1]. It will help to overcome poor channel conditions
like obstructed LOS and NLOS propagation situations and
it gives diversity that is needed to improve the robustness
in such cases. As the CLRB in (1) quantifies the ranging-
related information contained in the LOS link, the CRLB on
the position error for multipath-assisted localization shows
that each specular MPC contributes to the position-related
information [79].

The cost of this approach lies in the models and algorithms
needed to leverage these advantages. A data association step
is crucial for assigning the MPCs to a geometric model. Of
key importance is also the rigorous modeling of the ranging
information provided by each MPC (utilizing the CRLB) such
that a proper weighting of those contributions can be achieved
[76]. A belief propagation based probabilistic data association
approach has been presented in [117], allowing for “soft”
associations and achieving low computational complexity due
to a factor graph formulation.

The next issue to be addressed is the acquisition of the
geometric model. It can be derived from a given floor plan
which defines the location of virtual anchors, mirror images
of the physical anchor location [76]. To avoid the difficulty
of deriving such a model “by hand”, a SLAM algorithm has
been developed in [118], which estimates the geometric model
simultaneously to the agent localization. In [119], [120] a
belief propagation based SLAM algorithm has been developed
that uses probabilistic data association. The authors of [121]
estimate the locations of virtual anchors without an underlying
geometrical model. A corresponding multiple hypothesis data
association method has been derived in [122].

2) NLOS Identification and Mitigation: Machine Learning
Approach: In localization algorithms it is often assumed that
the statistical observation model, which relates the measure-
ments to the position (e.g., TOA), is perfectly know. However
the model barely matches the real world.

Because of its critical benefit to localization, NLOS iden-
tification research has gain much traction in recent years and
several ways of achieving it, have been proposed. Common
mechanisms involve considering geometric channel models to
estimate the distance traveled by multipath rays, or considering
polarization of the signal where every polarization change is
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Fig. 6. Location accuracy – effect of NLOS identification. [123]

considered to be a reflection, or also using some statistical
characterization [124] [125] [126].

NLOS identification and mitigation techniques that involve
hypothetical approaches that require determination of the joint
probability distributions of the underlying features, produce
heuristic outcomes. Geometric model based approaches as-
sume a maximum of just one reflection or refraction, in the
path between the base station and the target [125]. This may
not be the case in some environments. A comprehensive survey
of NLOS identification and mitigation techniques is discussed
in [124].

There are new and promising techniques for NLOS identifi-
cation based on machine learning techniques. These techniques
in the form of support vector machines, are optimization-
based approaches that have been demonstrated to be effective
in NLOS classification in both outdoor [123] and indoor
environments [127]. In both approaches, the Least-squares
Support Vector Machine (LSSVM) are used to perform both
NLOS identification and mitigation, an approach that does not
require any statistical modeling of LOS and NLOS channels,
hence can performs both tasks under a common framework.
One interesting application is the use of ray-tracing for loca-
tion specific NLOS identification, to aid outdoor geolocation,
whose results demonstrated a best-case scenario of only 1.9%
identification error when received signal power, RMS time
delay and angle of arrival (AOA) are used as features.

NLOS Mitigation in LSSVM approaches is achieved by esti-
mating the ranging error. Function estimation in the LSSVM,
is used to estimate the error in the measured time delay or
alternatively, the error in the corresponding range estimate. In
the location specific approach, the input space to the support
vector machine comprises of the base station position, and
selected features or combinations of them, from received
signal power, time delay and AOA at base station. The output
is the time delay error or alternatively, the range error. The
LSSVM is trained to obtain the regressor parameters which
are then used to estimate range errors from a separate data set
meant to be used for localization. The LS-SVM formulation
and detailed options are available from Vapnik’s original for-

mulation [128] and in [129]. The effect of NLOS identification
is demonstrated in Fig. 6 (from [123]).

3) Crowd-based learning approaches for NLOS mitigation:
The model mismatch in real-world situations can be accounted
for by incorporating in the model unknown parameters, such
as the extra delay due to NLOS conditions, that, in general,
are functions of space and that have to be jointly estimated
with the location. A way to tackle this problem is to make
use of crowd-based learning approaches in which position-
dependent unknown parameters are treated as spatial fields
of which knowledge is refined by exploiting the presence of
a large amount of users (the crowd) that enter the area of
interest simultaneously or in different times. Specifically, after
a user crosses the area, it takes advantage of the available
estimated field obtained from measurements acquired by pre-
vious users. In turn, the estimate of this field is updated by
the measurements of this user. Thereby, subsequent users can
also benefit by using the field for their own localization. This
can be termed as an indirect cooperation approach. In [130],
a learning and spatial representation scheme whose memory
and computational burden do not increase with the number
of measurements is presented for the tracking of users in
indoor scenarios in the presence of NLOS conditions. In this
scheme the crowd-based learning process and the tracking
process continuously exchange their estimates (NLOS bias
field and position, respectively) as new ranging measurements
are obtained.

4) NLOS Identification and Mitigation: Classical Finger-
printing and Ray-tracing: TOA- and TDOA-based methods
are the most popular schemes used for localization in wireless
networks. The studies in [131] have shown the problems faced
by compact direction finding antenna array used by AOA
sensors and how the performance is affected when integrated
into small platforms. However, TDOA localization systems are
more affected by multipath propagation and diffraction of rays,
since they induce an inherent positive bias which can lead to
substantial location errors.

There are several approaches to deal with NLOS propa-
gation conditions in TDOA Systems. In [132], a scattering
model together with a matched filter was proposed. In [133],
[134], methods are presented that apply a statistical test on
the normalized signal residuals for LOS/NLOS identification,
assuming that LOS components have a chi-square distribution
and the NLOS components a non-central chi-square distribu-
tion. Measurements identified as NLOS where not considered
for localization in this approaches. NLOS bias mitigation
techniques are presented for example in [135] and [136].

It is also possible to obtain the propagation information to
deal with NLOS using RF fingerprinting, either by performing
extensive measurement campaigns or using ray tracing simu-
lation softwares covering the environment of interest.

In [137], a multipath database was created using a grid
of possible emitter positions, where the AOAs (azimuth and
elevation) and TOAs were recorded, giving a signature for each
possible transmitter location in the area of interest using a ray-
tracing software. The received signal of NLOS components is
compared with the values in this database, to estimate the
emitter position with the same multipath fingerprint.
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Fig. 7. (top) Indoor IoT network: average location accuracy for the proposed
consensus-based method (red ellipse), the conventional approach (light blue
ellipse) and CRB (black dashed contour). (bottom) Outdoor IoT network:
implicit improvement of the vehicle location accuracy (red ellipse) based on
the cooperative localization of features (red ellipse) compared to the GNSS-
based approach (light blue contour).

In [91], a ray-tracing-based modified multilateration method
was proposed that can cope with NLOS conditions. It uses a
discrete approach for emitter location estimation to improve
the position accuracy.

5) Cooperative positioning: Distributed techniques for lo-
calization in IoT and IoV: In 5G, key application clusters
are represented by massive IoT and mission-critical control
including in particular VANet for Internet-of-Vehicle (IoV)
applications. Both IoT and IoV scenarios envision the deploy-
ment of dense networks of devices interconnected by device-
to-device (D2D) communications, with decentralized sensing
and processing capabilities [138], [139]. These networks call

for the adoption of distributed architectures that ensure in-
teroperability, scalability, flexibility and robustness. Network
localization is an important issue to support location-based
network functionalities in IoT [140], or assisted/automated
driving systems in IoV [141]. Distributed techniques have
become a key approach in this context as they enable devices
to self-localize - also in critical dynamic scenarios - by ex-
ploiting communications with neighbors, without the support
of any central coordinator, facilitating high-reliability and low-
latency operations. Consensus algorithms, in particular, have
been proposed to make the devices cooperatively reach an
agreement on location-related parameters by relying solely
on local data and message exchange with neighbors. This
approach was shown to improve both coverage and accuracy
of localization in dense network deployments [142].

Fig. 7-(top) shows an example of distributed localization
for an indoor IoT scenario (DEIB, Politecnico di Milano)
[142], with 17 IEEE 802.15.4 compliant terminals, including
8 anchors acting as reference nodes and 9 devices to be
cooperatively localized from D2D received signal strength
measurements. A weighted-consensus algorithm is used to
enable each device to acquire the whole network topology, by
successive refinements of local position estimates and repeated
D2D interactions. In the figure, the average location accuracy
is represented in terms of error ellipses at 39% confidence plot-
ted around the device locations. The proposed consensus-based
method (orange ellipse) is shown to significantly improve the
conventional approach (light blue ellipse) and to closely attain
the CRB shown as a reference (black dashed contour).

A similar technique is considered in the context of IoV
in the example of Fig. 7-(bottom). A novel implicit cooper-
ative positioning (ICP) technique [143] is used to enhance
the accuracy of conventional GNSS-based positioning in as-
sisted/automated driving applications by data sharing through
vehicle-to-vehicle communications. The scenario includes 8
cooperative vehicles and 10 non-cooperative (passive) fea-
tures (e.g., people, traffic lights, inactive vehicles), which are
cooperatively localized by the vehicles. A consensus-based
belief propagation algorithm is implemented by the vehicles
to localize, in a fully distributed manner, the jointly sensed
features and use them as common noisy reference points
(red ellipse) to implicitly enhance their own location accuracy
(red ellipse) with respect to the performance of GNSS-based
solution (light blue ellipse).

E. Positioning Technologies and Measurement Acquisition

In recent years we assisted to the introduction of a plethora
of wireless technologies targeted to different application fields
ranging from cellular networks, IoT, and vehicular communi-
cations. At the same time new technologies such as massive
antenna arrays, mm-Wave, Tera-Hertz and visible light com-
munications are going to be introduced in a pervasive manner.
Each of them offers different kind of measurements and
hence different opportunities of exploitation for positioning.
Especially IoT networks are resource limited, meaning that
energy efficient positioning solutions, even battery-less or
passive, are of great interest.
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Fig. 8. Opportunities offered by single-anchor localization and massive
antenna arrays (from [66]).

In this section we illustrate some recent advances in these
directions.

1) Exploiting narrowband measurements for positioning in
IoT: Narrowband technologies have very limited positioning
capabilities, due to the low power, scarce temporal resolution
of signals, and complexity constraints of IoT devices. In
addition, interference at unlicensed bands can definitely result
in a poor localization performance, but it can be mitigated
with coordinated transmission schemes in licensed bands.
Therefore, the positioning capabilities of 3GPP narrowband
technologies, i.e., eMTC or LTE-M, LTE NB-IoT and EC-
GSM-IoT, were studied in Release 14, as it is described in
[144]. The main positioning algorithms are enhanced-CID (E-
CID), OTDoA and UTDoA. Certainly, the narrow bandwidth,
as well as the sparse network density, limits the positioning
performance, which is typically desired to fulfill 50m position
accuracy. In order to achieve this requirement, a frequency-
hopping (FH) mechanism is studied in [144], by using the
flexibility of the narrowband PRS (NPRS) in LTE NB-IoT.
The results show that a position accuracy below 50m can
be achieved even in multipath environments, but different
impairments still need to be tackled, such as signal acquisi-
tion, hardware-induced offsets and cross-correlation ambiguity
[144].

Another direction of investigation is the exploitation of the
recently introduced public LoRaWAN network. It provides the
possibility to perform an alternative way of geo-localization,
using TDOA techniques, but with the processing load shifted
from the mobile to the back-end network [145], making it
much more suitable for localization of resource constrained
devices. Recent experimental results, took place around Eind-
hoven, the Netherlands, considering both pedestrian and ve-
hicular users, indicate that rough positioning accuracies in the
order of about 160 meters and 100 meters, respectively, are
possible. Such accuracy can be significantly improved to about
70 meters by processing raw TDOA measurements with a road
mapping filter making use of the OpenStreetMap database and
the approach proposed in [146].

2) Mm-wave and beyond positioning:
a) mm-wave and massive antenna arrays: The future

availability of massive antenna arrays at both the mobile

device and anchor nodes, thanks to the reduction of the
wavelength at mm-wave, will open several opportunities as
already discussed in Sec. V-C2a, especially for IoT appli-
cations. Among them, very appealing is the possibility to
localize mobiles using a single anchor node. This capability
is becoming more and more important, especially for indoor
environments. In fact, the use of only one anchor will allow
the exploitation of the same infrastructure used for com-
munications also for positioning purposes. This overcomes
the problem of deploying a redundant ad hoc infrastructure
which is, nowadays, the bottleneck slowing the widespread
diffusion of indoor localization systems. Moreover it opens
new perspectives in infrastructure-less IoT scenarios where the
user terminal directly interacts with objects (tags) deployed in
the environment by, possibly, powering up via wireless power
transfer, communicating, and localizing them relatively to its
own position, as discussed in [66] and reported in 8. A single
anchor approach is interesting also to support UAVs navigation
in critical environments/applications by deploying a ground
station equipped with a 2D antenna array that can estimate
elevation, azimuth, and distance. Then, this information can be
provided to the UAV through an uplink channel [147]–[149].

b) Combined VLC and mm-wave based positioning:
Combination of visual light communication (VLC) and ra-
dio communication in the unlicensed THz spectrum and
mm Wave up/downlink channels in unlicensed 30-300 GHz
spectrum is a promising solution which allows wireless
communication networks to be deployed in buildings that
can provide bit rates greater than 10Gbits/sec, latencies less
than 1ms, location accuracy less than 10cm, whilst reducing
EMF levels and interference, lowering energy consumption
at transmitter/receiver and increasing User Equipment (UE)
energy battery lifetime. Such an approach is followed e.g.
the H2020 EU Project "Internet of Radio Light" (IORL,
https://iorl.5g-ppp.eu). IORL is elaborating a 5G broadband
radio-light communication/localization system that provides
universal broadband coverage indoors within buildings from
remote radio-light heads (RRLHs) that represent access points
located within the light roses in buildings.

The mm-Wave based positioning system exploits location
relevant parameters that can be estimated either at UE (in
the downlink) or at the RRLH controller (in the uplink).
The receiver performs measurements and estimates location
relevant signal parameters such as the received signal strength
(RSS), round-trip times (RTTs), or the time-difference of
arrival (TDOA) between different RRLHs. The positioning
system based on VLC extends the capabilities of the mm-Wave
based system. It uses visible light signals for determining
the positioning of target where the signals are transmitted by
RRLH lamps (e.g. LEDs) and received by light sensors (e.g.
photodiode (PD) or camera), on the target UE as shown in
Fig. 9.

The main benefit of such heterogeneous mm-Wave and VLC
communication system is the availability of broadband com-
munications services and indoor localization of UEs with an
accuracy better than 10cm. Such a high positioning accuracy is
to be achieved by combining mm-Wave and VLC technologies
in location estimation. The VLC based localization system can
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Fig. 9. Concept of the VLC based localization followed by the IORL project.

be installed inexpensively since it utilizes existing illumination
systems with only few modifications. It can be used in RF-
inappropriate environments, like hospitals, underground mines
and gas stations. Another advantage of VLC-IPS is that there
is less effect of multipath on visible light than on RF signal,
so the position estimation could be more accurate.

c) EM Lens Antennas for Localization: The resolution
of localization techniques based on AoA estimation can be
improved with the usage of massive antennas array (MAA)
systems as discussed in [40], [150], [151]. However, as we
mentioned in Section III, this approach may increase both
the hardware (RF chains) and the computational complexities,
especially when subspace based algorithms, such as MUSIC
or ESPRIT, are deployed. An approach to reduce complexity
consists of the deployment of electromagnetic (EM) lens [41],
[152].

The EM lenses have recently attracted a renewed interest
by the wireless communications community because of the
interest in developing mm-Wave systems, where the lens
physical dimensions have acceptable size [153]. EM lenses
have been studied mostly for beam forming to enhance data
rates in massive MIMO [154]. Their ability to focus the
impinging wave energy in a small subset of the array elements,
makes them attractive in AoA estimation applications as well.
Thus, only a small subset of array elements (depending on the
AoA) needs to be processed, which contributes to significantly
reduce hardware and associated signal processing complexity
[155]–[157]. The focusing ability is also beneficial for sepa-
rating the multipath signal components arriving from different
directions and reducing the signal interference [155]. As a
result, enhanced AoA resolutions can be attained as compared
to the system without lens, despite the reduced complexity.

The localization system depicted in Fig. 10, shows that
the system comprises the EM lens (with radius Rl and/or
extension length Lex) combined with a massive ULA, a block
that detects the focused subsets of antennas, and a block that
implements fine AoA digital estimation. A fully digital or a
mixed analog-digital architecture can be realized aiming at

Fig. 10. System model for the EM lens assisted massive antennas array based
localization.

increasing precision and simplifying the system further. In this
regard, one can consider a fully digital localization system by
applying for instance the subspace algorithms, i.e., MUSIC, on
the selected subset of array elements in baseband [155], [156].
Moreover, simpler analog signal processing methods can also
be envisioned i.e., the sum-difference patterns technique pro-
posed in [157]–[159] that exploits RF couplers.

3) Energy Autonomous Positioning for IoT:

Interrogation UWB signal 

Structural mode + clutter 

Antenna mode 
(depending on the switch) 

Backscattered UWB signal 

TAG 

UWB 
switch 

Fig. 11. UWB backscatter communication principle.

a) Localization of battery-less tags: In the new scenarios
foreseen by the IoT, industrial and consumer systems will be
required to detect and localize tagged items or goods with high
accuracy using cheap, energy autonomous (battery-less), and
disposable tags.

Current UHF-RFID technology, designed for detecting
battery-less tags, does not include a standard feature for high
accuracy positioning as requested by many emerging applica-
tions (e.g., augmented reality, logistics). In specific controlled
conigurations, carrier phase information can be exploited to
achieve high accuracy positioning [66], [160], [161]. Another
possibility for high accuracy localization of passive RFID tags
is to modulate a direct sequence spread spectrum signal onto
the interrogation signal of a standard UHF-RFID reader [162].
Coherent combining of the spreading signal is possible by
utilizing the known RN16 response of the RFID tag, leading
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to sub-meter positioning accuracy with COTS-available RFID
tags [163], [164].

To achieve even higher positioning accuracies, a combina-
tion of UWB backscattering for communication/localization
purposes [165]–[167] and UHF for "on demand” powering of
battery-less tags [168] is needed. Here power transfer is done
through the UHF link since the strict regulations on power
emission mask in the UWB band do not allow for a sufficient
energy accumulation in the tag. The same link can be used to
address the tag (wake-up). Once addressed, the intended tag
starts switching the load of its UWB antenna between short
and open circuit, according to a proper coded sequence, thus
modifying (modulating) the way the UWB signal emitted by
the interrogating node is backscattered by the tag (see Fig. 11).
By analyzing the backscattered signal and measuring the total
round-trip time, the interrogating node can detect the tag and
determine its distance with high accuracy (ranging). It is worth
to note that no UWB receiving and transmitting circuits are
needed in the tag which thus can be made extremely energy
efficient and small. In Sec. VI-D examples of implementations
and tests of UWB-RFID localization systems with battery-less
tags in real scenarios is presented.

b) Passive Localization using 5G signals: With its in-
creased bandwidth and its envisioned usage for vehicular
communication, 5G new radio signals might be exploited for
road surveillance in automotive environments, thus, enabling
extended awareness including non-cooperative road users as
for instance pedestrians, cyclists and non-equipped vehicles.
In particular, arrays of widely separated 5G road-side units
can be used to probe reflected signals of moving objects in
order to classify them and determine their position and velocity
(passive localization). An example of this application is given
in [169] where authors present a road surveillance system
based on 5G signals and discuss an appropriate waveform
design for determining range and Doppler of a moving object.
Measurements with a static antenna array in [170] showed
that different objects can be classified on behalf of its reflected
power and can be tracked by the signals they scatter. The mea-
surements demonstrate the capability of RF sensor networks
for positioning and velocity estimation of non-cooperative road
users.

VI. TESTBEDS AND PROTOTYPING ACTIVITIES

In order to conduct experimental research, companies and
institutions build testbeds, which are new product develop-
ment platforms and environments for conducting rigorous,
transparent, fair and reproducible testing of scientific theories,
new concepts and technologies, as well as for the rapid
development and assessment of prototypes.

A. Bridging the gap between simulation and real test with
standardized testing approaches

1) Need for a common real test procedure: Evaluating
options for positioning techniques during standardization in
3GPP is performed trough simulations based on jointly agreed
parameter set and assumptions. Often the simulation envi-
ronments parameters are based on data communication and

are common for evaluating different techniques within pre-
defined scenarios. The results give a strong indication on the
expected performance however the positioning performance
can only be concluded with tests in real environments. As
another aspect, tracking systems datasheets are often not com-
parable due to different and not standardized testing methods
of vendors. To predict the performance without disturbing
for example the production process, pseudo-real environment
measurements will help to prevent expensive test installations
on the user side. 5G positioning will evaluate various position-
ing technologies which are targeting different environments
and designed for special purposes and applications. Whether
evaluating the performance of single techniques or hybrid
solutions defining standard test procedures is essential for
drawing irrefutable results.

2) Test approach : The need for industry accepted method-
ologies for testing positioning performance was identified
in [171] for evaluating positioning system that can fulfill
the E911 accuracy requirements. It attempted also to set a
baseline standard for indoor positioning testing. Within 5G,
the applications extend further to target more scenarios like in
industrial and automotive applications. Hence, for testing the
performances or for validation if requirements are fulfilled,
this requires the definition of standardized test approaches.

Three kinds of tests can be distinguished, namely: basic
performance tests, pseudo-real tests and real live tests. The
former is generally applied, when the basic performance of
a system is requested. This comprises a static point test,
where points within a specific area are examined, and a driven
trajectory, which can be achieved by a robot platform. Pseudo-
real tests consist of environmental setups, where the specific
characteristics of the examined application are simulated.

3) Testbeds: Testbeds are needed that implement the
above and are available to involved parties. While having
the required measurement capabilities, the advantage of such
a test center is the feasibility of setting up the test sce-
nario with reproducible environmental conditions supporting
high dynamics and seamless indoor/outdoor measurements.
For indoor industrial applications for example, a setup like
in Fig. 12 is defined for evaluating the radio performance
inside a working cell of a production environment. Proof-
of-Concept-Setups of potential 5G tracking technologies like
dense deployments or and multiple antenna systems can be set
up and multiple frequency ranges including millimeter-wave
bands can be covered. One existing example to address the
issue of characterizing systems is Fraunhofer IIS’s test center
in Nuremberg, Germany [172].

B. GNSS-based Testbeds

The swiftly evolving landscape of GNSS signals and sys-
tems demands rapid prototyping tools in order to explore
receivers’ full capability, including radically new uses of those
signals. That flexibility is hard to find in today’s GNSS
receiver technology, mainly driven by application-specific in-
tegrated circuits (ASIC) and system-on-chip (SoC) implemen-
tations with high development costs and very limited degree
of reconfigurability, thus hampering experimentation and fair
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Fig. 12. Test and Application Centre L.I.N.K. (industry 4.0 setup with
automatic robot).

trials of new approaches. Manufacturers are incorporating
new features to their commercial receivers at steady pace:
most low-cost, mass-market GNSS receivers are already multi-
constellation (GPS and GLONASS) but still not multiband.
In contrast, professional receivers are mostly dual-band, with
some triple-band model (Novatel’s OEM628) already avail-
able, and allow for access to observables via RINEX files or
RTCM stream messages.

In all cases, modern GNSS receivers’ performance heavily
relies on assistance data from external systems (e.g., cellular
and WiFi networks) in order to shorten the time-to-first-fix
or enhance their navigation performance via the application
of high-accuracy algorithms such as Real Time Kinematics
(RTK) or Precise Point Positioning (PPP). The interplay be-
tween GNSS receivers and 5G networks is expected to have a
growing importance in the provision of new positioning ser-
vices, specifically on those requiring high levels of accuracy,
precision and reliability.

An example of testbed aimed to the research on Global
Navigation Satellite Systems signals is GESTALTr (a loose
acronym for GNSS Signal Testbed), a facility located at
CTTC’s headquarters (Castelldefels, Spain). The installation
includes hardware, software and networking components, con-
stituting a state-of-the-art facility for research and development
of next-generation’s GNSS receivers. The presented facility
(see Fig. 13) is equipped with an assortment of GNSS anten-
nas; GNSS signal generators for controlled experiments; state-
of-the-art radio-frequency front-ends able to work concurrently
in three GNSS frequency bands, with configurable bandwidth,
frequency downshifting and filtering; digitation working at
sample rates as high as 80 MSps with 8-bit, coherent I/Q
samples; high-speed interfaces to a host computer; and an open
source GNSS software receiver in charge of signal processing
and generation of suitable outputs in standard formats.

A key GESTALTr feature is its openness. In addition
to the fact that it can be fully operated remotely, the core
software receiver engine in charge of all the digital signal
processing chain is a free and open source project with a
lively community of users and developers (check the website at

(a) Antenna platform. (b) Laboratory rack.

Fig. 13. GESTALTr Testbed for the experimentation with GNSS signals.
It includes a set of antennas and RF front-ends, and a host server running
instances of an open source software-defined GNSS receiver.

http://gnss-sdr.org). Accordingly, a partial testbed replication
can be done on a limited budget with commodity computers
and low cost, over-the-counter antennas and radio-frequency
front-ends. This allows for the practical implementation of
new concepts, reproducible research and short assessment and
validation times, ultimately shortening the gap between ideas
for new uses of GNSS signals and user-driven, market-ready
products and services.

A network of software-defined GNSS receivers executed
in the cloud could be a solution to overcome the limited
computational resources of IoT node. In this solution, the
GNSS receiver is no longer a physical device but a virtualized
function provided as a service. In [173], authors proposed a
system architecture based on optical networks and automated
orchestration tools to deliver continuous service with high-
accuracy performance to users with high-bandwidth connec-
tivity, which could be provided by 5G networks.

Virtualisation technologies also offer a convenient solution
for security-related applications (e.g. GPS M code, Galileo
PRS), since the encryption module remains on the service
provider’s premises, and there is no need for a security module
in the receiver equipment. This approach may enable the
widespread use of restricted/authorised signals by the civilian
population.

C. Localisation for Massive MIMO Testbeds

Massive MIMO provides an opportunity for superior po-
sitioning schemes based on the highly accurate AOA/AOD
information that can be obtained via the use of massive
antenna arrays. In particular, it presents an opportunity for a
simple, single BS localisation by utilizing the LOS AOA and
mobile station range information. Massive MIMO challenges
are discussed in [174] and [175]. User/mobile detection is
usually done as a first step in modern wireless systems. If
full localisation can be performed at the same time, there are
potential benefits that such an approach can bring to the next-
generation wireless systems as discussed in [176].
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Fig. 14. Bristol Massive MIMO testbed

An overview of the University of Bristol’s Massive MIMO
testbed can be found in [176]. Fig. 14 shows the distributed
system, each cabinet with radios driving a 32-element sub
array, to act as a base station. The two Universal Software
Radio Peripherals (USRPs) and a laptop shown on the figure,
are the user equipment. The testbed is currently being used in
the development, test and validation of DOA and localization
strategies.

Localisation schemes that employs DOA estimation can be
approached in two different ways, when massive MIMO arrays
are considered. One way is to perform DOA on individual,
separate base stations, and then use tri-angulation to get the
location of the target or user equipment (UE). Another way is
to take advantage of the large geometries of linear or rectangu-
lar arrays to perform DOA using different subsets of antennas
on the array. This allows DOA estimation and subsequently
triangulation, to be performed using just a single BS. This
approach however, depends on array size and geometry. It is
suitable for LOS scenarios with smaller coverage areas, like
indoor environments. Linear or rectangular arrays will suffer
from the Geometric Dilution of Precision (GDOP) problem,
but use of subarrays for DOA estimation allows localisation
algorithms to have a choice over the selection of best DOA
estimates, based on predetermined confidence criterion. Fig.
15 shows how subarrays on a rectangular array may be used
for DOA estimation to achieve localization using a single
base station. A major challenge with most DOA approaches
is the calibration of the antenna arrays. Super resolution AOA
requires multiple antennas at each base station, which is well
provided for by massive MIMO, but calibrating those hundreds
of radio chains is a challenge.

D. Testbeds of Localization systems based on battery-less tags

Here we briefly describe some implementation and test beds
of battery-less localization systems based on the UWB-RFID
concept explained in Sec. V-E3.

In [168] and references therein, most of the aspects related
to the design of UWB-RFID systems based on backscatter

Fig. 15. Localisation using a single BS with a large antenna array

Fig. 16. Test of the UWB-RFID battery-less localization system on the Mars
Rover prototype in the Automation and Robotics Laboratories at ESA.

modulation are discussed such as the design of dual-band
UWB/UHF rectenna, energy harvesting circuits, and signal
processing techniques. The experimental campaign described
carried out in a real environment indicates that an accuracy of
about 4 cm in a 5x5 area. Another test bed is that described in
[177] where the same technology was applied to order luggage
in airports when items are as close each other as less then 20
cm.

Better performances have been obtained within the "LOST”
project funded by the European Space Agency by a team
composed by the University of Bologna and the University
Catholique of Louvain. The main objective of the project was
to study radio technologies able to localize with centimeter-
level accuracy battery-less tags inside the International Space
Station (ISS), which is a quite challenging "indoor” scenario.
Differently from the previous test bed, here the tag accumu-
lates the energy from the UHF link and once addressed sends
out a train of UWB pulses through a small energy efficient
UWB pulse generator. In this way longer ranges have been
obtained with the same accuracy, in particular more than 10
meters both in wireless power transfer and UWB localization.
The functionality and performance of the LOST system have
been successfully tested directly on the Mars Rover prototype
in the Automation and Robotics Laboratories at ESA as shown
in Fig. 16.

VII. NON-TECHNICAL CHALLENGES

The successful deployment of advanced localization ser-
vices in future wireless networks can also be hampered by
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a number of non-technical challenges (in addition to the
aforementioned technical ones). To start with, regulations on
the privacy of geolocation information have a very important
role to play. In the US, where such regulations are mostly
addressed at the state (rather than federal) level, there exist
multiple bills aiming for a tighter use of geolocation data.
For example, the Location Privacy Protection Act would
"prohibit companies from collecting or disclosing geolocation
information from an electronic communications device without
the user’s consent". Still, it provides exceptions for parents
tracking their children, emergency services, law enforcement,
and other cases. In Europe, the Directive on Privacy and
Electronic Communications dictates that location data can only
be used if anonymized. If not, (i) users must give their consent
for their location data to be used and accessed; and (ii) the
service provider must inform the user about what location data
is collected, processed, for which purpose, and whether it will
be transmitted to any third parties. Besides, users are allowed
to opt out at any time. Clearly, all the above puts stringent
limits to the collection and/or use of location data by e.g.,
network operators.

Another issue is the lack of suitable business models for
many application scenarios. This is partly due to the fact that
most location services offered today by wireless networks are
driven by regulatory requirements. Take, for instance, the 112
number for emergency services. Knowing the exact location of
people calling the 112 emergency number is very important for
emergency services. This knowledge ensures, inter-alia, timely
interventions, or verification of genuine calls. But, again, this is
not the result of any underlying business model. Instrumental
towards the definition of business models is the identification
of the various players in the value chain, their roles, strategies
and responsibilities. For instance, in order to address auto-
motive applications, mobile network operators, road operators
(public or private sector entities) and the automotive industry
need to form alliances. This process has started in e.g., the
5G Automotive Association (5GAA) but needs to continue at
a wider scale.

The access to the location information gathered by future
mobile networks also deserves some attention. Nowadays,
a vast majority of location-based apps running on mobile
phones and handheld devices (e.g., apps for navigation, fitness-
tracking, etc.) just require access to GNSS, IMU or Wi-
Fi measurements (i.e., over-the-top). End-users are generally
inclined to grant access to such data. But, will the new built-
in positioning capabilities of 5G might be equally accessible
to all parties? Or just to certain parties such as the mobile
network operator. Or, perhaps, will the cost of getting access
to location data be prohibitively high in an attempt to reap
part of the benefits of over-the-top offerings?

VIII. RECOMMENDATIONS

Localization and tracking techniques are finding their way
as an integral part of future wireless communication systems
like 5G. Despite of the attention raised among the research
community, many open issues at the scientific, technological
and regulatory levels still remain. Besides, the impact of

a widespread adoption of network-based localization in a
number of verticals (e.g., transportation, healthcare, tourism),
society (e.g„ enhanced road safety, emergency management,
etc), and communication networks themselves (e.g., reduced
CAPEX/OPEX for network optimization) is very large. All
the above, calls for an increased and more coordinated effort
in the years to come.

To that aim, we propose the following recommendations and
way forward:

1) Additional research efforts in areas such as (i) syn-
chronization mechanisms and requirements for different
environments, such as indoor, urban, sub-urban and
rural.; (ii) cooperative positioning; (iii) data fusion:
the combination of heterogeneous measurements from
multiple sources (wireless networks including 5G, cam-
eras, inertial systems, VLC) and frequency bands (cm-
wave, mm-wave); (iv) joint optimization of the (often
contradictory) communications and positioning targets;
(v) the exploitation of multi-path propagation/NLOS
scenarios in localization algorithms; (vi) the derivation
of suitable channel models, in particular for higher
frequency bands and/or massive MIMO settings; (vii)
low energy consumption and complexity reduction in
large antenna arrays and/or IoT devices; and, last but
not least, (ix) the derivation of (asymptotic) performance
limits for the benchmarking of actual systems.

2) A closer interaction among the signal processing,
channel modeling, network protocol, radiofrequency
and microelectronic design communities in order to
overcome the aforementioned technological problems
related with localization and tracking functionalities in
future wireless networks .

3) Continuous monitoring of, and provision of inputs
to, standardization bodies (notably 3GPP, IEEE) and
industry fora, along with interaction with regulatory
bodies for the purpose of ensuring global impact and
economies of scale of localization technologies.

4) Broader and sustained support from publicly-run
research funding programs (Horizon 2020, GSA),
in order to underpin the aforementioned research and
standardization efforts.

5) Identification of novel application scenarios (e.g., in-
telligent transportation systems, industrial environments,
retail) and use cases potentially benefiting from the
increased localization accuracy and reliability of 5G and
future communication systems can offer.

6) Increased efforts in experimental research and proto-
typing activities, aimed to help bridge the gap between
theoretical research and commercial exploitation, with
emphasis in the usage of open-source testbeds, for
reproducibility.

IX. CONCLUSIONS

Localization technologies are called to play a central role
in the design of 5G communication systems and IoT wireless
technologies. This whitepaper, which has been authored by
members of the Experimental Working Group "Localization
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and Tracking" of the COST Action IRACON, is aimed to
highlight this.

The paper has started with a summary of the most promising
future application scenarios for high-accuracy positioning.
This includes intelligent transportation systems, unmanned
aerial vehicles, industrial applications like system control, or
factory and process automation; retail (e.g., for indoor user
navigation to desired products or proximity marketing), or
ambient assisted living. Except for the last two scenarios, sub-
meter accuracies and latency values below 10 ms are needed
for positioning. And, clearly, those requirements cannot be met
by today’s wireless communication systems.

The review of future application scenarios has been fol-
lowed by a discussion of the technical challenges arising from
them. To start with, a variety of heterogeneous (wireless) tech-
nologies will be needed to support such variety of applications
and performance requirements. Besides, efficient methods to
mitigate/exploit multipath propagation, the detection of line-
of-sight availability or time synchronization schemes for in-
dependent radio transceivers must be developed. Despite that
large antenna array systems (likely to be used in future 5G
systems) can significantly improve the precision of angle-of-
arrival based localization systems, particular attention has to
be paid to hardware complexity and cost complexity consider-
ations; whereas power consumption and computational burden
turn out to be key challenges for IoT-based localization.

Next, we have illustrated the expected features and lim-
itations of 5G and IoT wireless systems with respect to
positioning. The larger bandwidths in 5G systems, on the
one hand, allow for a higher degree of delay resolution.
On the other, higher carrier frequencies result into fewer
propagation paths and the possibility to pack more antennas
into a given area. All the above, clearly, leads to a high
degree of resolvability of multipath signals and, in turn,
enhanced positioning accuracy. Network densification is also
beneficial in that it maximizes the probability of having LOS
condition with, possibly, multiple base stations. Along with
that, the availability of device-to-device links also provides
an additional source of positioning information. The narrow
bandwidth and large coverage of long range IoT solutions
(LoRa, Sigfox, LRLP, NB-IoT, etc.), on the contrary, limit
to a large extent their achievable positioning performance.
For short-range and narrowband systems like Bluetooth Low
Energy or RFID, however, fingerprinting-based or proximity
techniques can achieve meter-level accuracies. Complementar-
ily, short-range wideband systems (e.g., IEEE 802.15.4a UWB
standard) allow for centimeter-level accuracies.

This white paper has also attempted to describe the state-of-
the-art of recent scientific and technical progress in the field.
Since in localization systems the information associated to the
position is embedded in channel parameters such as TOA or
RSS, there is a pressing need to derive channel models able to
capture such dependencies. A non-exhaustive list of channel
model families includes classical narrowband ones such as
Hata-like models, deterministic ray-tracing and ray-launching
models, geometry-based stochastic models, and models based
on graph theory. On a different key, theoretical performance
limits provide insight into what performance levels can possi-

bly be achieved, based on some given signal model. Therefore,
we have discussed and presented some recent research results
concerning performance limits in measurement acquisition
(TOA, AOA or RSS estimation; impact of clock drift, etc),
localization and tracking, for a range of localization scenarios
like mm-wave, single-anchor massive arrays, and sub-6 GHz
cellular systems. Besides, we have analyzed the inherent trade-
offs between positioning accuracy and achievable communi-
cation data rate, since the available time-frequency resources
must be shared between both tasks. We have also reviewed a
number of advanced methods and algorithms for positioning
and tracking. On the one hand, we have focused our attention
on novel multipath-assisted localization techniques exploiting
(rather than attempting to mitigate) specular multi-path com-
ponents in order to improve robustness in NLOS scenarios. On
the other, we have also discussed NLOS identification schemes
based on machine learning techniques (e.g., support vector
machines); approaches for NLOS mitigation by incorporating
extra parameters in the channel model accounting for the extra
delay; or cooperative positioning techniques for IoT and IoV
scenarios, enabling devices to self-localize by exploiting com-
munication with their neighbors (via consensus algorithms, for
instance). To conclude this part, we have also provided an
overview of recent advances in the exploitation of narrowband
measurements for positioning in IoT. This includes resorting to
coordinated transmission schemes in licensed bands or shifting
the processing load from the (resource constrained IoT device)
to the back-end network, like in LoRaWAN networks. We have
also discussed combined VLC and mm-wave based positioning
schemes allowing for (very) broadband communication ser-
vices and indoor localization services of UEs with an accuracy
below 10 cm; and the use of electromagnetic lens antennas to
focus impinging waves on a subset of elements in a large array
(and, by doing so, minimize hardware costs and computational
complexity).

In order to bridge the gap between theoretical advances
and product development, experimental research and proto-
typing activities are key. In this context, testbeds play a
very prominent role. For this reason, we have brought to the
reader’s attention the availability of GNSS-based testbeds like
GESTALT. This is a software-defined receiver and open-source
project which allows for the practical implementation of new
concepts, to investigate e.g, the interplay of GNSS receivers
and 5G networks for the provision of new localization services.
Complementarily, we have also reported on a number of exper-
imental activities on localization for massive MIMO testbeds;
and testbeds of battery-less (tags) localization systems based
on UWB-RFID concepts.

Finally, we have outlined a number of non-technical chal-
lenges hindering the successful deployment of advanced lo-
calization services. This includes privacy regulations on ge-
olocation information, the lack of suitable business models for
many application scenarios, or the need to identify the various
players in the value chain. To close this white paper, we
have put forward a number of recommendations to facilitate a
widespread adoption of (network-based) localization services:
additional research and funding efforts; a closer interaction
of a number of research communities, tighter interaction
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with relevant standardization bodies, identification of novel
application scenarios and, last but not least, increased efforts
in experimental research and prototyping activities.
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[91] J. Schmitz, F. SchrÃűder, and R. Mathar, “Tdoa fingerprinting for
localization in non-line-of-sight and multipath environments,” in 2015
International Symposium on Antennas and Propagation (ISAP), Nov
2015, pp. 1–4.

[92] M. Raspopoulos, “Multidevice map-constrained fingerprint-based in-
door positioning using 3-d ray tracing,” IEEE Transactions on Instru-
mentation and Measurement, vol. 67, no. 2, pp. 466–476, Feb 2018.

[93] P. Meissner, M. Gan, F. Mani, E. Leitinger, M. FrÃűhle, C. Oestges,
T. Zemen, and K. Witrisal, “On the use of ray tracing for performance
prediction of uwb indoor localization systems,” in 2013 IEEE Interna-
tional Conference on Communications Workshops (ICC), June 2013,
pp. 68–73.

[94] V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca,
“Measurement and modelling of scattering from buildings,” IEEE
Transactions on Antennas and Propagation, vol. 55, no. 1, pp. 143–
153, Jan 2007.
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